期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
多形态模式的信息存储非线性重构仿真
1
作者 仲崇丽 《计算机仿真》 北大核心 2019年第8期463-466,471,共5页
针对当前信息存储方法存在耗时长和安全性差的问题,提出多形态模式的信息存储非线性重构方法。依据具有IP可跟踪性的安全检测方法,实时记录多形态模式信息结构,相隔额定周期开展一次安全检测。利用EWMA预测模型预测各周期信息值,实现信... 针对当前信息存储方法存在耗时长和安全性差的问题,提出多形态模式的信息存储非线性重构方法。依据具有IP可跟踪性的安全检测方法,实时记录多形态模式信息结构,相隔额定周期开展一次安全检测。利用EWMA预测模型预测各周期信息值,实现信息安全检测。采用主成分分析法将原始信息由高维变量空间转换至低维特征空间,实现多形态模式信息降维。引入非线性动力机制,对多形态模式信息时间序列进行相空间重构,并依据密集度刻画不同信息在相空间中存在的差异性,基于信息安全检测与降维,结合支持向量机分类器构建信息存储模型,实现不断更新的多形态模式信息分类存储。实验结果表明,该方法信息存储效率高,且具有安全性,与当前相关方法比较性能更强。 展开更多
关键词 多形态模式 信息存储 非线性重构
下载PDF
基于非线性重构模型的植物叶片图像集分类方法
2
作者 刘孟南 杜吉祥 《计算机科学》 CSCD 北大核心 2017年第B11期212-216,共5页
提出一种基于非线性重构模型的植物叶片图像集的分类识别方法。该方法首先使用高斯受限玻尔兹曼机(GRBMs)通过非监督预训练来初始化模型的权值;然后针对每一个植物叶片图像集用初始化的模型训练得到一个特定的模型;最后根据测试样本的... 提出一种基于非线性重构模型的植物叶片图像集的分类识别方法。该方法首先使用高斯受限玻尔兹曼机(GRBMs)通过非监督预训练来初始化模型的权值;然后针对每一个植物叶片图像集用初始化的模型训练得到一个特定的模型;最后根据测试样本的最小重构误差和测试样本集的最多投票策略来判定测试样本集的类别。该方法通过图像预处理来处理图像,避免了图像在缩放时发生形变,并采用基于k-means的特征提取方法来提取植物叶片图像特征。实验结果表明,该方法能够准确地对植物叶片图像集进行分类识别。 展开更多
关键词 非线性重构模型 高斯RBMs k-means特征提取 图像预处理
下载PDF
基于非线性故障重构的旋转机械故障预测方法 被引量:7
3
作者 马洁 李钢 陈默 《自动化学报》 EI CSCD 北大核心 2014年第9期2045-2050,共6页
对旋转机械的状态进行在线监测和故障预测是一个:!WriE要应用价伉的工程M题.釆⑴驻于核fe元分析的非线性故障巫构技术研究了多变量相关条件下旋转机械的故障估计及预测问题.首先利用核主元分析对旋转机械系统进行离线非线性建模,并进行... 对旋转机械的状态进行在线监测和故障预测是一个:!WriE要应用价伉的工程M题.釆⑴驻于核fe元分析的非线性故障巫构技术研究了多变量相关条件下旋转机械的故障估计及预测问题.首先利用核主元分析对旋转机械系统进行离线非线性建模,并进行异常检测.通过对故障程度进行定量描述,用最优化方法求解故障重构意义F的故障估计;然后用多层递阶的方法对估计出的故障幅值的发展趋势进行预测.最后,以中国石化北京燕山分公司的烟气轮机作为实际应用对象,验证了该方法的有效性. 展开更多
关键词 旋转机械 非线性故障重构 核主元分析 多层递阶预测
下载PDF
基于压缩感知的自适应正则化磁共振图像重构 被引量:9
4
作者 李青 杨晓梅 李红 《计算机应用》 CSCD 北大核心 2012年第2期541-544,共4页
当前基于压缩传感理论的正则化磁共振(CS-MR)图像重构算法普遍采用全局正则化参数,不能很好地在保持边缘和平滑噪声方面做出平衡。为此,提出一种自适应的正则化CS-MRI重构算法。结合图像稀疏性和其局部光滑性的先验知识,采用非线性共轭... 当前基于压缩传感理论的正则化磁共振(CS-MR)图像重构算法普遍采用全局正则化参数,不能很好地在保持边缘和平滑噪声方面做出平衡。为此,提出一种自适应的正则化CS-MRI重构算法。结合图像稀疏性和其局部光滑性的先验知识,采用非线性共轭梯度下降算法求取最优化问题,并在迭代过程中自适应地改变局部正则化参数。新的正则化参数可以更好地恢复图像边缘,并且有利于平滑噪声,使代价函数在定义域内具有凸性;同时先验信息包含于正则化参数中,以提高图像的高频成分。实验结果表明该算法能有效权衡恢复图像边缘和平滑噪声两者的关系。 展开更多
关键词 磁共振成像 压缩感知 自适应正则化 稀疏性 非线性重构
下载PDF
单比特量化信号空域谐波抑制与目标重构方法 被引量:1
5
作者 徐新菊 叶佩平 +3 位作者 金林 姚元 吴刚 晋本周 《现代雷达》 CSCD 北大核心 2022年第8期20-24,共5页
对于单比特量化信号,常规线性处理方法难以有效抑制非线性量化导致的谐波分量。文中提出了一种基于线性与非线性联合的空域谐波抑制与目标重构方法。首先,基于线性预处理和预检测,获取接收信号的主要分量,建立降维观测模型;然后,基于广... 对于单比特量化信号,常规线性处理方法难以有效抑制非线性量化导致的谐波分量。文中提出了一种基于线性与非线性联合的空域谐波抑制与目标重构方法。首先,基于线性预处理和预检测,获取接收信号的主要分量,建立降维观测模型;然后,基于广义消息传递算法,对降维后的信号模型进行求解,抑制谐波分量并对真实目标进行重构。针对网格失配问题,通过对预检测结果进行参数估计,实现了对降维模型的修正。仿真结果表明:文中所提方法可对真实目标进行重构,并有效抑制单比特量化导致的空域谐波。 展开更多
关键词 单比特量化 谐波抑制 非线性重构
原文传递
Constitutive equations of 1060 pure aluminum based on modified double multiple nonlinear regression model 被引量:6
6
作者 李攀 李付国 +2 位作者 曹俊 马新凯 李景辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1079-1095,共17页
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature... In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series &parallel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision. 展开更多
关键词 1060 pure aluminum modified DMNR(double multiple nonlinear regression) constitutive equation flow behaviour multilevel series rules multilevel parallel rules multilevel series & parallel rules
下载PDF
Human action recognition based on chaotic invariants 被引量:1
7
作者 夏利民 黄金霞 谭论正 《Journal of Central South University》 SCIE EI CAS 2013年第11期3171-3179,共9页
A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for represent... A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness. 展开更多
关键词 chaotic system action recognition chaotic invariants dynamic time wrapping (DTW) relevance vector machines(RVM)
下载PDF
A Neural Network based Method for Detection of Weak Underwater Signals 被引量:1
8
作者 潘俊阳 韩晶 杨士莪 《Journal of Marine Science and Application》 2010年第3期256-261,共6页
Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function ... Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B. 展开更多
关键词 detection theory underwater weak signal extended Kalman filter
下载PDF
Nonlinear multifunctional sensor signal reconstruction based on least squares support vector machines and total least squares algorithm 被引量:2
9
作者 Xin LIU Guo WEI +1 位作者 Jin-wei SUN Dan LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期497-503,共7页
Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. I... Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method. 展开更多
关键词 Least squares support vector machine Total least squares Multifunctional sensor Signal reconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部