针对贝叶斯跟踪中目标状态的预测分布和后验分布,利用序列蒙特卡洛方法,基于多变量t-分布提出了一种新的粒子滤波算法,称之为t-分布粒子滤波器.为了根据样本估计目标状态的概率分布,提出了一种新的ECME算法,并嵌入到t-分布粒子滤波器中...针对贝叶斯跟踪中目标状态的预测分布和后验分布,利用序列蒙特卡洛方法,基于多变量t-分布提出了一种新的粒子滤波算法,称之为t-分布粒子滤波器.为了根据样本估计目标状态的概率分布,提出了一种新的ECME算法,并嵌入到t-分布粒子滤波器中.理论分析表明,在t-分布条件下,t-分布粒子滤波器是在样本数量上的渐近最优估计器.在机动目标跟踪实验中,比较了t-分布粒子滤波器、无色卡尔曼滤波(Unscented Kalm an filter)及自助式粒子滤波器(Bootstrap partic le filters)的跟踪精度.展开更多
A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optima...A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.展开更多
Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: ...Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: one is caused by the difference between the means of original and equivalent stochastic structure; and another is caused by the difference between the original and equivalent stochastic structure which has the relation with stochastic variables. Statistical characteristics of equivalent stochastic structure can be obtained in accordance with mean square criterion, so nonlinear stochastic structure is transformed into linear stochastic structure. In order to attain that objective, the compound response spectrum of linear stochastic structure under stationary random excitation which is used in the solution is derived in the case of the mutual independence between stochastic excitation and stochastic structure. Finally, the example shows the accuracy and validity of the proposed method.展开更多
文摘针对贝叶斯跟踪中目标状态的预测分布和后验分布,利用序列蒙特卡洛方法,基于多变量t-分布提出了一种新的粒子滤波算法,称之为t-分布粒子滤波器.为了根据样本估计目标状态的概率分布,提出了一种新的ECME算法,并嵌入到t-分布粒子滤波器中.理论分析表明,在t-分布条件下,t-分布粒子滤波器是在样本数量上的渐近最优估计器.在机动目标跟踪实验中,比较了t-分布粒子滤波器、无色卡尔曼滤波(Unscented Kalm an filter)及自助式粒子滤波器(Bootstrap partic le filters)的跟踪精度.
基金Projects(61203234,61135001,61075029,61074179) supported by the National Natural Science Foundation of ChinaProject(20110491692) supported by the Postdoctoral Science Foundation of China
文摘A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.
文摘Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: one is caused by the difference between the means of original and equivalent stochastic structure; and another is caused by the difference between the original and equivalent stochastic structure which has the relation with stochastic variables. Statistical characteristics of equivalent stochastic structure can be obtained in accordance with mean square criterion, so nonlinear stochastic structure is transformed into linear stochastic structure. In order to attain that objective, the compound response spectrum of linear stochastic structure under stationary random excitation which is used in the solution is derived in the case of the mutual independence between stochastic excitation and stochastic structure. Finally, the example shows the accuracy and validity of the proposed method.