期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于CNN-LSTM的燃气轮机燃烧室故障预警 被引量:1
1
作者 周锐 康英伟 《热能动力工程》 CAS CSCD 北大核心 2024年第1期191-197,215,共8页
为了解决燃气轮机燃烧室中的故障问题,结合深度学习的优势,在长短期记忆网络(Long Short-term Memory,LSTM)的基础上,提出了一种基于卷积神经网络-长短期记忆网络的燃烧室故障预警方法。首先,根据正常的历史运行数据构建燃烧室的预警模... 为了解决燃气轮机燃烧室中的故障问题,结合深度学习的优势,在长短期记忆网络(Long Short-term Memory,LSTM)的基础上,提出了一种基于卷积神经网络-长短期记忆网络的燃烧室故障预警方法。首先,根据正常的历史运行数据构建燃烧室的预警模型,再将特征参数输入到预警模型中得到预测值,预测值与实际值之间的偏离度可以反映燃烧室内部工作是否正常。考虑到模型预测结果的非平稳性和非线性等特点,引入滑动窗口法确定故障预警阈值,最后根据确定的预警阈值判断是否出现故障。采用某燃气-蒸汽联合循环发电机组仿真平台对上述模型进行验证。仿真结果表明:该模型相较于LSTM预测模型具有更高的精确度,可以及时发现故障征兆,并对燃烧室故障做出有效预警。 展开更多
关键词 燃烧室 故障预警 LSTM神经网络 卷积神经网络 预测偏离度 滑动窗口法
原文传递
基于LSTM神经网络与贝叶斯优化的电站风机故障预警 被引量:18
2
作者 雷萌 吕游 +1 位作者 魏玮 任倩 《热能动力工程》 CAS CSCD 北大核心 2022年第8期213-220,共8页
风机持续健康稳定运行是电站机组安全性与经济性的重要保障,故障预警技术对于提高风机运行可靠性和降低维护成本尤为重要。为此,本文提出一种基于长短期记忆(Long short-term memory,LSTM)神经网络与贝叶斯优化算法的早期故障预警方法,... 风机持续健康稳定运行是电站机组安全性与经济性的重要保障,故障预警技术对于提高风机运行可靠性和降低维护成本尤为重要。为此,本文提出一种基于长短期记忆(Long short-term memory,LSTM)神经网络与贝叶斯优化算法的早期故障预警方法,充分挖掘电站风机正常运行数据,采用LSTM网络挖掘多种参数的关联特性及历史数据的时序特性,建立风机运行状态预测模型。为了提高预测模型的精确度,利用贝叶斯优化算法优化并设定LSTM网络的最佳超参数组合。考虑模型预测偏离度的非平稳性和多极值特点,引入广义极值理论从正常运行工况中确定报警阈值,以实现设备的早期故障预警。最后,将所提出的算法应用于某燃煤电站引风机故障预警中。结果表明:贝叶斯优化算法优化后的LSTM神经网络不仅可以精确表征风机在正常状态下运行行为,同时能够准确地获取风机的故障信息,从而能够在故障发生前4 h发现异常,实现故障预警。 展开更多
关键词 LSTM神经网络 贝叶斯优化 电站风机 故障预警 预测偏离度 广义极值理论
原文传递
Forecasting Gas Consumption Based on a Residual Auto-Regression Model and Kalman Filtering Algorithm 被引量:9
3
作者 ZHU Meifeng WU Qinglong WANG Yongqin 《Journal of Resources and Ecology》 CSCD 2019年第5期546-552,共7页
Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 20... Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 2017,this paper presents a weight method of the inverse deviation of fitted value,and a combined forecast based on a residual auto-regression model and Kalman filtering algorithm is used to forecast gas consumption.Our results show that:(1)The combination forecast is of higher precision:the relative errors of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are within the range(–0.08,0.09),(–0.09,0.32)and(–0.03,0.11),respectively.(2)The combination forecast is of greater stability:the variance of relative error of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are 0.002,0.007 and 0.001,respectively.(3)Provided that other conditions are invariant,the predicted value of gas consumption in 2018 is 241.81×10~9 m^3.Compared to other time-series forecasting methods,this combined model is less restrictive,performs well and the result is more credible. 展开更多
关键词 residual auto-regressive model Kalman filtering algorithm inverse fitting value deviation method combined forecast
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部