Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work t...Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented.展开更多
Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approx...Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load.展开更多
Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-cor...Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization.展开更多
文摘Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented.
基金Project (No. 1027054) supported by the National Natural Science Foundation of China
文摘Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load.
基金supported by Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization.