为了预测航空器滑行预计到达时间(Estimated time of arrival,ETA),减少场面冲突,提高机场运行效率,本文使用卡尔曼滤波算法对场面历史轨迹数据进行预处理。为了衡量轨迹样本间的距离,综合三类特征用于机场场面历史轨迹数据聚类。特征...为了预测航空器滑行预计到达时间(Estimated time of arrival,ETA),减少场面冲突,提高机场运行效率,本文使用卡尔曼滤波算法对场面历史轨迹数据进行预处理。为了衡量轨迹样本间的距离,综合三类特征用于机场场面历史轨迹数据聚类。特征包含航空器滑行时段和场面航空器数量,以及参考动态时间规整(Dynamic time warping,DTW)算法提取的轨迹差异度特征。将两个样本特征的欧式距离作为样本间的相似度量;基于均差最大原则确定初始聚类中心,使用K-means算法对样本进行聚类,根据待规划航空器的所处时段和场面航空器数量选择匹配度最高的类簇,将其聚类中心样本的轨迹序列和塔台规划的静态路径相结合预测航空器滑行ETA。通过将实际轨迹数据与预测的滑行ETA进行对比分析,证明了本文预测航空器滑行ETA的准确性。展开更多
针对即时配送“最后一公里”的问题,综合利用订单取送点、即时配送骑手历史时空轨迹、兴趣面(area of interest,AOI)空间范围与门禁位置等数据,精确预估AOI内部各兴趣点(point of interest,POI)到相应可通行门禁点的时间、距离及路径。...针对即时配送“最后一公里”的问题,综合利用订单取送点、即时配送骑手历史时空轨迹、兴趣面(area of interest,AOI)空间范围与门禁位置等数据,精确预估AOI内部各兴趣点(point of interest,POI)到相应可通行门禁点的时间、距离及路径。在此基础上设计了配套的调用选优策略,获得最优的末端指引方案,以有效提高即时配送路径质量及时间距离预估准确性。展开更多
在城市的公交站台,不少人已经习惯站定后先划开手机,通过手机A P P输入目的地,了解可乘线路公交车的实时到站信息、预计到达时间;智能停车场收费系统越来越普及,车辆出入记录、停车位置、收费时长经过数据的反映变得一目了然,节省人力...在城市的公交站台,不少人已经习惯站定后先划开手机,通过手机A P P输入目的地,了解可乘线路公交车的实时到站信息、预计到达时间;智能停车场收费系统越来越普及,车辆出入记录、停车位置、收费时长经过数据的反映变得一目了然,节省人力的同时还提升了效率。这一切,都要归功于智能交通的发展。展开更多
文摘为了预测航空器滑行预计到达时间(Estimated time of arrival,ETA),减少场面冲突,提高机场运行效率,本文使用卡尔曼滤波算法对场面历史轨迹数据进行预处理。为了衡量轨迹样本间的距离,综合三类特征用于机场场面历史轨迹数据聚类。特征包含航空器滑行时段和场面航空器数量,以及参考动态时间规整(Dynamic time warping,DTW)算法提取的轨迹差异度特征。将两个样本特征的欧式距离作为样本间的相似度量;基于均差最大原则确定初始聚类中心,使用K-means算法对样本进行聚类,根据待规划航空器的所处时段和场面航空器数量选择匹配度最高的类簇,将其聚类中心样本的轨迹序列和塔台规划的静态路径相结合预测航空器滑行ETA。通过将实际轨迹数据与预测的滑行ETA进行对比分析,证明了本文预测航空器滑行ETA的准确性。
文摘针对即时配送“最后一公里”的问题,综合利用订单取送点、即时配送骑手历史时空轨迹、兴趣面(area of interest,AOI)空间范围与门禁位置等数据,精确预估AOI内部各兴趣点(point of interest,POI)到相应可通行门禁点的时间、距离及路径。在此基础上设计了配套的调用选优策略,获得最优的末端指引方案,以有效提高即时配送路径质量及时间距离预估准确性。