We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the con...We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the contrast in impedance and anelasticity i across interfaces, the intemal anisotropic propagation, the dispersion and attenuation along i the wave path, and tuning and interference. The results suggest that for large angles of incidence, the velocity dispersion and attenuation increase the amplitudes of PP waves from the top and decrease those from the bottom. For azimuthal responses at specific angles of incidence, the reflected wavetrains of PP waves tend to have longer duration with increasing azimuth. In contrast, model-converted PSV and PSH reflections show stable azimuthal features and are less affected by the reflector thickness. The amplitudes of PSV reflections increase with increasing azimuth; moreover, the waves have no reflection energy at 0° and 90° azimuth and maximum amplitude at 45° azimuth.展开更多
During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects o...During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.展开更多
In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Bas...In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Basically, this involves transmission of low frequency luminance information at full frame rate for good motion rendition and transmission of high frequency luminance signal at reduced frame rate for good detail in static images.展开更多
A wideband dipole signal is required for dipole dispersion correction and nearborehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a s...A wideband dipole signal is required for dipole dispersion correction and nearborehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a segment linear frequency modulation (SLFM) signal as the dipole excitation signal to compensate for the excitation intensity. The signal-to-noise ratio (SNR) of the signal over the entire frequency band is increased. The finite-difference method is used to simulate the responses from a Ricker wavelet, a linear frequency modulation (LFM) signal, an NLFM signal, and an SLFM signal in two borehole models of a homogeneously hard formation and a radially stratified formation. The dispersion and radial tomography results at low SNR of the sound source signals are compared. Numerical modeling suggests that the energy of the flexural waves excited by the Ricker wavelet source is concentrated near the Airy phase. In this case, the dispersion is incomplete and information regarding the formation near or far from the borehole cannot be obtained. The LFM signal yields dispersion information near the Airy phase and the high-frequency range but not in the low-frequency range. Moreover, the information regarding the formation far from the borehole is not accurate. The NLFM signal extends the frequency range of the flexural waves by compensating for the excitation intensity and yields information regarding the formation information, but it is not easy to obtain. The SLFM signal yields the same results as the NLFM signal and is easier to implement. Consequently, the dipole detection range expands and the S-wave velocity calculation accuracy improves.展开更多
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear globa...At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.展开更多
The elasticity, viscosity, and the relationships derived from rheology weakness properties are taken into account in mechanics. Comparing with the corresponding relationships derived from damage mechanics, we find the...The elasticity, viscosity, and the relationships derived from rheology weakness properties are taken into account in mechanics. Comparing with the corresponding relationships derived from damage mechanics, we find the weakness factor has the same significance as the damage factor. We simulate the wave field using a staggered-grid pseudospectral method to show the influence of the weakness factor qualitatively. Applying the analytical solution of plane waves, we give the velocity and attenuation coefficient of three body waves, which are affected by the wave frequency and the weakness factor of saturated discrete media. Our results show that velocity decreases with increasing weakness factor, the attenuation coefficient increases with an increase in the weakness factor, and that the influence of weakness depends on the mode of the body waves.展开更多
Most sedimentary formations with fine layers can be characterized as transversely isotropic media.The evaluation of shear-wave anisotropy is critical in logging-while-drilling(LWD)applications.We developed a joint met...Most sedimentary formations with fine layers can be characterized as transversely isotropic media.The evaluation of shear-wave anisotropy is critical in logging-while-drilling(LWD)applications.We developed a joint method to simultaneously invert formation shear-wave anisotropy and vertical shear velocity using LWD monopole and dipole dispersion data.Theoretical analysis demonstrates that formation shear-wave anisotropy significantly aff ects the dispersion characteristics of Stoneley and formation flexural waves.The inversion objective function was constructed based on the change in dispersion characteristics and was weighted by the spectra of multipole waves.Numerical results using synthetic examples demonstrate that the joint inversion method can not only alleviate the non-uniqueness problem but also help improve the accuracy of the inversion results.The comparison of diff erent signal-to-noise ratio inversion results proved that the weighted inversion method is more accurate and stable.展开更多
The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation ...The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks.In the exploration and production of hydrocarbon reservoirs,the real stratum may be partially saturated with a multi-phase fluid mixture in general.Therefore,it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids.In this work,the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory.A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchysaturation theory.Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation,external patchy diameter,and viscosity.We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures,where the basic properties of the rock are obtained at the full gas saturation.The comparison of experimental data and theoretical modeling results shows a fairly good agreement,indicating that the new theory is effective.展开更多
基金sponsored by the National Natural Science Foundation of China(under Grant Nos.41404090 and U1262208
文摘We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the contrast in impedance and anelasticity i across interfaces, the intemal anisotropic propagation, the dispersion and attenuation along i the wave path, and tuning and interference. The results suggest that for large angles of incidence, the velocity dispersion and attenuation increase the amplitudes of PP waves from the top and decrease those from the bottom. For azimuthal responses at specific angles of incidence, the reflected wavetrains of PP waves tend to have longer duration with increasing azimuth. In contrast, model-converted PSV and PSH reflections show stable azimuthal features and are less affected by the reflector thickness. The amplitudes of PSV reflections increase with increasing azimuth; moreover, the waves have no reflection energy at 0° and 90° azimuth and maximum amplitude at 45° azimuth.
基金sponsed by National Natural Science Foundation of China(NSFC,Grant No.41304077)the Natural Basic Research Program of China(the“973 Project,”Grant No.2013CB733303)Postdoctoral Science Foundation of China(Grant No.2014T70740)
文摘During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.
文摘In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Basically, this involves transmission of low frequency luminance information at full frame rate for good motion rendition and transmission of high frequency luminance signal at reduced frame rate for good detail in static images.
基金This work was supported by the National Natural Science Foundation of China (Nos. 11574347, 11734017, 91630308, and 11374322), the Youth Talent Project of the Institute of Acoustics of Chinese Academy of Sciences (No. QNYC201619), and the PetroChina Innovation Foundation (No. 2016D-5007-0304).
文摘A wideband dipole signal is required for dipole dispersion correction and nearborehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a segment linear frequency modulation (SLFM) signal as the dipole excitation signal to compensate for the excitation intensity. The signal-to-noise ratio (SNR) of the signal over the entire frequency band is increased. The finite-difference method is used to simulate the responses from a Ricker wavelet, a linear frequency modulation (LFM) signal, an NLFM signal, and an SLFM signal in two borehole models of a homogeneously hard formation and a radially stratified formation. The dispersion and radial tomography results at low SNR of the sound source signals are compared. Numerical modeling suggests that the energy of the flexural waves excited by the Ricker wavelet source is concentrated near the Airy phase. In this case, the dispersion is incomplete and information regarding the formation near or far from the borehole cannot be obtained. The LFM signal yields dispersion information near the Airy phase and the high-frequency range but not in the low-frequency range. Moreover, the information regarding the formation far from the borehole is not accurate. The NLFM signal extends the frequency range of the flexural waves by compensating for the excitation intensity and yields information regarding the formation information, but it is not easy to obtain. The SLFM signal yields the same results as the NLFM signal and is easier to implement. Consequently, the dipole detection range expands and the S-wave velocity calculation accuracy improves.
基金supported by the National Natural Science Foundation of China(No.41374123)
文摘At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
基金0ur work is supported by the 0pen Fund of the CNPC Key Lab of Geophysical Exploration (GPKL0202), the 0pen Fund of the State Key Laboratory of 0il and Gas Reservoir Geology and Exploitation (PLC200304), and the Natural Science Foundation of Hubei Province (2002AB018).
文摘The elasticity, viscosity, and the relationships derived from rheology weakness properties are taken into account in mechanics. Comparing with the corresponding relationships derived from damage mechanics, we find the weakness factor has the same significance as the damage factor. We simulate the wave field using a staggered-grid pseudospectral method to show the influence of the weakness factor qualitatively. Applying the analytical solution of plane waves, we give the velocity and attenuation coefficient of three body waves, which are affected by the wave frequency and the weakness factor of saturated discrete media. Our results show that velocity decreases with increasing weakness factor, the attenuation coefficient increases with an increase in the weakness factor, and that the influence of weakness depends on the mode of the body waves.
基金supported by the National Natural Science Foundation of China (Grant No.12174421)the Hubei Key Laboratory of Advanced Aerospace Propulsion Technology (Grant No.KFJJ2020-02).
文摘Most sedimentary formations with fine layers can be characterized as transversely isotropic media.The evaluation of shear-wave anisotropy is critical in logging-while-drilling(LWD)applications.We developed a joint method to simultaneously invert formation shear-wave anisotropy and vertical shear velocity using LWD monopole and dipole dispersion data.Theoretical analysis demonstrates that formation shear-wave anisotropy significantly aff ects the dispersion characteristics of Stoneley and formation flexural waves.The inversion objective function was constructed based on the change in dispersion characteristics and was weighted by the spectra of multipole waves.Numerical results using synthetic examples demonstrate that the joint inversion method can not only alleviate the non-uniqueness problem but also help improve the accuracy of the inversion results.The comparison of diff erent signal-to-noise ratio inversion results proved that the weighted inversion method is more accurate and stable.
基金supported by the National Natural Science Foundation of China(Grant no.41704109)the Jiangsu Province Outstanding Youth Fund Project(Grant no.BK20200021).
文摘The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks.In the exploration and production of hydrocarbon reservoirs,the real stratum may be partially saturated with a multi-phase fluid mixture in general.Therefore,it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids.In this work,the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory.A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchysaturation theory.Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation,external patchy diameter,and viscosity.We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures,where the basic properties of the rock are obtained at the full gas saturation.The comparison of experimental data and theoretical modeling results shows a fairly good agreement,indicating that the new theory is effective.