The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
This paper proposes a simple method to enlarge the estimation range of conventional carrier frequency offset (CFO) estimation methods based on correlations among the identical parts of the preamble. A novel preamble i...This paper proposes a simple method to enlarge the estimation range of conventional carrier frequency offset (CFO) estimation methods based on correlations among the identical parts of the preamble. A novel preamble is designed, which is composed of one regular OFDM training block with even numbers of identical parts and one irregular OFDM training block with odd numbers of identical parts. The initial estimates obtained over the two training blocks are next exploited to jointly estimate the CFO. By elaborately selecting the numbers of identical parts for the two training blocks, the proposed CFO estimator can estimate frequency offset over tens of the subcarrier spacing. Simulation results showed that the proposed CFO estimator satisfies the estimate range requirement for the practical OFDM systems, while achieving a very good estimate performance.展开更多
A new Direction Of Arrival (DOA) estimation algorithm for wideband sources based on Uniform Circular Array (UCA) is presented via analyzing widcband performance of the general ESPRIT. The algorithm effectively imp...A new Direction Of Arrival (DOA) estimation algorithm for wideband sources based on Uniform Circular Array (UCA) is presented via analyzing widcband performance of the general ESPRIT. The algorithm effectively improves the wideband performance of ESPRIT based on the interpolation principium and UCA-ESPRIT. The simulated results by computer demonstrate its efficiency.展开更多
The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seism...The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.展开更多
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA12331007) and the National NaturalScience Foundation of China (No. 60572157)
文摘This paper proposes a simple method to enlarge the estimation range of conventional carrier frequency offset (CFO) estimation methods based on correlations among the identical parts of the preamble. A novel preamble is designed, which is composed of one regular OFDM training block with even numbers of identical parts and one irregular OFDM training block with odd numbers of identical parts. The initial estimates obtained over the two training blocks are next exploited to jointly estimate the CFO. By elaborately selecting the numbers of identical parts for the two training blocks, the proposed CFO estimator can estimate frequency offset over tens of the subcarrier spacing. Simulation results showed that the proposed CFO estimator satisfies the estimate range requirement for the practical OFDM systems, while achieving a very good estimate performance.
文摘A new Direction Of Arrival (DOA) estimation algorithm for wideband sources based on Uniform Circular Array (UCA) is presented via analyzing widcband performance of the general ESPRIT. The algorithm effectively improves the wideband performance of ESPRIT based on the interpolation principium and UCA-ESPRIT. The simulated results by computer demonstrate its efficiency.
基金This work was supported by The National Key Research and Development Program(No.2016YFC0600505 and 2018YFC0603701)National Natural Science Foundation(No.41974134 and 41774127).
文摘The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.