Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especia...Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth)method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new project frequent pattern growth (PFP-tree)algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence. So increase algorithm's scalability efficiently.展开更多
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque...Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.展开更多
文摘Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth)method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new project frequent pattern growth (PFP-tree)algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence. So increase algorithm's scalability efficiently.
文摘Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.