Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) sys...Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.展开更多
Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differenti...Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.展开更多
Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation ...Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.展开更多
Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are ava...Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.展开更多
With an improved Rayleigh fading model and a zero-mean stochastic sinusoid as the scattering and specular components respectively,a stochastic simulation model is proposed for the generation of Rayleigh and Rician fad...With an improved Rayleigh fading model and a zero-mean stochastic sinusoid as the scattering and specular components respectively,a stochastic simulation model is proposed for the generation of Rayleigh and Rician fading waveforms.Compared with the existing stochastic models,the proposed simulator needs only one trial to obtain the desired statistical properties even if the number of samples is not large enough.Moreover,the proposed simulation model can directly generate multiple uncorrelated waveforms for different fading scenarios,such as single-input single-output frequency selective channels and multiple-input multiple-output channels.The performance evaluation and comparison show that the proposed simulator is efficient and accurate.展开更多
This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the p...This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.展开更多
Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat fre...Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.展开更多
基金The National Natural Science Foundation of China(No.60702028)the National High Technology Research and Development Program of China(863Program)(No.2007AA01Z268)
文摘Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60272079)
文摘Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.
基金Supported by the National Natural Science Foundation of China (No.11274259) and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (No.20120121110030).
文摘Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.
基金the National Natural Science Foundation of China (No.69872029)
文摘Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.
基金Supported by the Science and Technology Innovation Foundation of Tianjin (No.10FDZDGX00400)
文摘With an improved Rayleigh fading model and a zero-mean stochastic sinusoid as the scattering and specular components respectively,a stochastic simulation model is proposed for the generation of Rayleigh and Rician fading waveforms.Compared with the existing stochastic models,the proposed simulator needs only one trial to obtain the desired statistical properties even if the number of samples is not large enough.Moreover,the proposed simulation model can directly generate multiple uncorrelated waveforms for different fading scenarios,such as single-input single-output frequency selective channels and multiple-input multiple-output channels.The performance evaluation and comparison show that the proposed simulator is efficient and accurate.
基金Supported by 863 program of China under Grant 2001AA123015.
文摘This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.
基金Supported by the High Technology Research and Development Program of China (No. 2003AA12331007 ) and National Natural Science Foundation of China ( No. 60272079).
文摘Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.