Background,aim,and scope Yardang is a kind of typical wind-eroded landform in arid zones both on Earth and other planets.Their geomorphic process records the surface changes and climate,which may play a vital role in ...Background,aim,and scope Yardang is a kind of typical wind-eroded landform in arid zones both on Earth and other planets.Their geomorphic process records the surface changes and climate,which may play a vital role in exploring the coupled landform-atmosphere system in arid zones.Recently,significant progresses have been made in this research field,and a review is still absent,which is the aim of the paper.Materials and methods Previous studies on the distribution,composition,morphology,and climatic driving force of yardang landform were reviewed.Results Earth yardang’s three evolutionary models were generalized:morphology evolution model,altitude evolution model and climate driven evolution model.Extraterrestrial yardang and its evolution are also summarized:the morphology is dominated by long ridges on Venus and Titan,and three yardang evolution hypotheses and an indirect dating method based on stratigraphic contact have been studied on Mars.Discussion In this study,firstly,the definition and morphology of yardang were described to define its characteristics.Secondly,we argue that yardang evolution has two dimensions:short-term variation and longterm variation.In the short-term variation,the morphological evolution of yardang on earth can be divided into four stages:embryonic stage,juvenile stage,mature stage,and demise stage.In the long-term variation,the evolution of yardang on earth is climate-driven,i.e.,it is controlled by atmospheric circulation changes during glacial-interglacial periods.Thirdly,yardang research on extraterrestrial bodies was also summarized:yardang has been found on Mars,Venus,and Titan,and the research focus by far are on geomorphology only.Conclusions(1)Yardang landform is an erosion landform with alternating ridges and troughs,with main form of whale back shape and fluctuations in the range of aspect ratios;(2)the short-term variation of yardang is manifested in its morphological evolution and height change,while the long-term variation is climate-driven;(3)based on Earth yardang,extraterrestrial yardang research has been carried out on Mars,Venus,and Titan.Recommendations and perspectives We then proposed that:(1)yardang formation ages,due to the erosion characteristics,are difficult to constraint;(2)the wind erosion capacity in the yardang areas might have been severely underestimated,making it essential to re-evaluate the previous paleoclimate reconstruction in the closed basins with limited chronological data;(3)yardang evolution is driven by climate change,but the coupling relationship between the yardang geomorphy and the air circulation is still unclear.Finally,future research directions:(1)more chronological data are needed,as well as the wind erosion capacity for yardang initiation and development;(2)the co-evolution of mid-low latitude landforms involved in yardang long-term variation and its relationship with global atmospheric circulation.展开更多
The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these chang...The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these changes is recoverable from the sedimentary sequences of the region.We report here on the thick eolian deposits mantling the Huajialing Mountains,a relatively flat mountain range in the western Loess Plateau.Correlation of magnetic susceptibility stratigraphy with the QA-I Miocene eolian sequence dates a 134.7 m section(NL-VII) for the interval from 18.7 to 11.8 Ma,as confirmed by micro-mammalian fossils.These eolian deposits demonstrate a much wider distribution of the Miocene eolian deposits,and also indicate that the topography contrasts in the western Loess Plateau,including the uplifts of the Huajialing Mountains and the bedrock highlands in the Qinan region,were formed by the early Miocene.The near-continuous Miocene eolian sequence from 18.7 to 11.8 Ma indicates that the substratum of Huajialing had not experienced any intense tectonic changes during this time interval,which suggests further,the relative tectonic stability of the nearby Tibetan Plateau.展开更多
文摘Background,aim,and scope Yardang is a kind of typical wind-eroded landform in arid zones both on Earth and other planets.Their geomorphic process records the surface changes and climate,which may play a vital role in exploring the coupled landform-atmosphere system in arid zones.Recently,significant progresses have been made in this research field,and a review is still absent,which is the aim of the paper.Materials and methods Previous studies on the distribution,composition,morphology,and climatic driving force of yardang landform were reviewed.Results Earth yardang’s three evolutionary models were generalized:morphology evolution model,altitude evolution model and climate driven evolution model.Extraterrestrial yardang and its evolution are also summarized:the morphology is dominated by long ridges on Venus and Titan,and three yardang evolution hypotheses and an indirect dating method based on stratigraphic contact have been studied on Mars.Discussion In this study,firstly,the definition and morphology of yardang were described to define its characteristics.Secondly,we argue that yardang evolution has two dimensions:short-term variation and longterm variation.In the short-term variation,the morphological evolution of yardang on earth can be divided into four stages:embryonic stage,juvenile stage,mature stage,and demise stage.In the long-term variation,the evolution of yardang on earth is climate-driven,i.e.,it is controlled by atmospheric circulation changes during glacial-interglacial periods.Thirdly,yardang research on extraterrestrial bodies was also summarized:yardang has been found on Mars,Venus,and Titan,and the research focus by far are on geomorphology only.Conclusions(1)Yardang landform is an erosion landform with alternating ridges and troughs,with main form of whale back shape and fluctuations in the range of aspect ratios;(2)the short-term variation of yardang is manifested in its morphological evolution and height change,while the long-term variation is climate-driven;(3)based on Earth yardang,extraterrestrial yardang research has been carried out on Mars,Venus,and Titan.Recommendations and perspectives We then proposed that:(1)yardang formation ages,due to the erosion characteristics,are difficult to constraint;(2)the wind erosion capacity in the yardang areas might have been severely underestimated,making it essential to re-evaluate the previous paleoclimate reconstruction in the closed basins with limited chronological data;(3)yardang evolution is driven by climate change,but the coupling relationship between the yardang geomorphy and the air circulation is still unclear.Finally,future research directions:(1)more chronological data are needed,as well as the wind erosion capacity for yardang initiation and development;(2)the co-evolution of mid-low latitude landforms involved in yardang long-term variation and its relationship with global atmospheric circulation.
基金supported by National Natural Science Foundation of China (Grant No. 40730104)Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q1-15 and KZCX2-YW-117)
文摘The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these changes is recoverable from the sedimentary sequences of the region.We report here on the thick eolian deposits mantling the Huajialing Mountains,a relatively flat mountain range in the western Loess Plateau.Correlation of magnetic susceptibility stratigraphy with the QA-I Miocene eolian sequence dates a 134.7 m section(NL-VII) for the interval from 18.7 to 11.8 Ma,as confirmed by micro-mammalian fossils.These eolian deposits demonstrate a much wider distribution of the Miocene eolian deposits,and also indicate that the topography contrasts in the western Loess Plateau,including the uplifts of the Huajialing Mountains and the bedrock highlands in the Qinan region,were formed by the early Miocene.The near-continuous Miocene eolian sequence from 18.7 to 11.8 Ma indicates that the substratum of Huajialing had not experienced any intense tectonic changes during this time interval,which suggests further,the relative tectonic stability of the nearby Tibetan Plateau.