The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl...The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.展开更多
Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To addr...Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.展开更多
Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented. The governing equations were the unsteady Reyn...Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented. The governing equations were the unsteady Reynolds-averaged Navier-Stokes (RANS) which were solved by the pimpleDyMFoam solver, and the AMI method was employed to handle mesh movements. The National Renewable Energy Laboratory (NREL) phase VI wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5, 10, 15, and 25 m/s) at a fixed blade pitch and constant rotational speed. Detailed numerical results of vortex structure, time histories of thrust, and pressure distribution on the blade and tower were presented. The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine, while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower. Also, strong interaction of blade tip vortices with separation from the tower was observed.展开更多
The solutions widely used at present for calculating complicated mine ventilation networks are ones in which resistance of the branches and characteristic parameters of the fans are taken as basic input data. But it i...The solutions widely used at present for calculating complicated mine ventilation networks are ones in which resistance of the branches and characteristic parameters of the fans are taken as basic input data. But it is time and energy consuming to obtain the branch resistance values. A new solution is developed in this paper in which the branch resistance values are obtained through measuring and evaluating the airflow of the whole ventilation network. Theoretical analysis is made of the establishment of a linear equation series with branch resistance as unknown numbers, an equation series for which one, and only one, result of solutions exists. This solution is programmed in C language and passed on a personal computer. The programmed solution programmed proves of practical use, as demonstrated by specific examples. Being different from other solutions, the method takes the branch airflow and fan working points as basic input data, and the present solution is of greater advantage for calculating ventilation networks of mines in operation.展开更多
This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctua...This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes.展开更多
In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the cond...In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion.展开更多
Qualitative analysis plus trial and error method are still the routine to achieve ventilation pressure balancing. These methods may cause large errors in pressure balancing so that sometimes the spontaneous combustion...Qualitative analysis plus trial and error method are still the routine to achieve ventilation pressure balancing. These methods may cause large errors in pressure balancing so that sometimes the spontaneous combustion can not be extinguished effectively. This paper introduces a quantitative analysis of pressure balancing for different causes of ventilation networks and develops a computer program (SPFPB) specifically written for pressure balancing between faces and connected gobs. It allows a user to choose different metheds to meet his various needs and the underground conditions. The different balancing results are compared, and the proper locations and sizes of the control devices are recommended.展开更多
基金Projects(51908125,51978155) supported by the National Natural Science Foundation of ChinaProject(W03070080)supported by the National Ten Thousand Talent Program for Young Top-notch Talents,China+1 种基金Project(BK20190359)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BE2018120) supported by the Key Research and Development Plan of Jiangsu Province,China。
文摘The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.
文摘Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
基金Supported by the National Natural Science Foundation of China under Grant Nos.50739004 and 11072154.
文摘Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented. The governing equations were the unsteady Reynolds-averaged Navier-Stokes (RANS) which were solved by the pimpleDyMFoam solver, and the AMI method was employed to handle mesh movements. The National Renewable Energy Laboratory (NREL) phase VI wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5, 10, 15, and 25 m/s) at a fixed blade pitch and constant rotational speed. Detailed numerical results of vortex structure, time histories of thrust, and pressure distribution on the blade and tower were presented. The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine, while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower. Also, strong interaction of blade tip vortices with separation from the tower was observed.
文摘The solutions widely used at present for calculating complicated mine ventilation networks are ones in which resistance of the branches and characteristic parameters of the fans are taken as basic input data. But it is time and energy consuming to obtain the branch resistance values. A new solution is developed in this paper in which the branch resistance values are obtained through measuring and evaluating the airflow of the whole ventilation network. Theoretical analysis is made of the establishment of a linear equation series with branch resistance as unknown numbers, an equation series for which one, and only one, result of solutions exists. This solution is programmed in C language and passed on a personal computer. The programmed solution programmed proves of practical use, as demonstrated by specific examples. Being different from other solutions, the method takes the branch airflow and fan working points as basic input data, and the present solution is of greater advantage for calculating ventilation networks of mines in operation.
文摘This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes.
基金supported by the Program for Postgraduates Research Innovation in University of Jiangsu Province of China (No.CXLX13_955)the National Natural Science Foundation of China (No.51104153)
文摘In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion.
文摘Qualitative analysis plus trial and error method are still the routine to achieve ventilation pressure balancing. These methods may cause large errors in pressure balancing so that sometimes the spontaneous combustion can not be extinguished effectively. This paper introduces a quantitative analysis of pressure balancing for different causes of ventilation networks and develops a computer program (SPFPB) specifically written for pressure balancing between faces and connected gobs. It allows a user to choose different metheds to meet his various needs and the underground conditions. The different balancing results are compared, and the proper locations and sizes of the control devices are recommended.