节点定位是无线传感器网络中最为关键的一项技术。针对无源定位的问题,提出一种到达时间差(TDOA)和到达信号增益比(GROA)联合定位算法,并且采用飞行机制的萤火虫算法(GSO)来求得最终结果。结合TDOA和GROA定位模型,引入辅助变量将方程伪...节点定位是无线传感器网络中最为关键的一项技术。针对无源定位的问题,提出一种到达时间差(TDOA)和到达信号增益比(GROA)联合定位算法,并且采用飞行机制的萤火虫算法(GSO)来求得最终结果。结合TDOA和GROA定位模型,引入辅助变量将方程伪线性化;然后采用修正两步加权最小二乘算法(TSWLS)来进行求解。并且在不影响收敛速度和精度的前提下,采用带有飞行机制的GSO算法来寻求目标定位的最优解,克服粒子群算法易陷入局部最优的缺点。仿真结果表明,该算法相比较TDOA算法,定位精度提高了23 d B,并且具有相对较高和较稳定的定位精度。展开更多
针对基于Levenberg-Marquardt方法辨识黄酒发酵过程模型参数时易陷入局部最优,收敛速度慢,很难准确获取具有强泛化能力的模型参数的问题,提出了一种具有莱维飞行机制和柯西变异的蚁狮优化算法(ant lion optimization with Levy flight a...针对基于Levenberg-Marquardt方法辨识黄酒发酵过程模型参数时易陷入局部最优,收敛速度慢,很难准确获取具有强泛化能力的模型参数的问题,提出了一种具有莱维飞行机制和柯西变异的蚁狮优化算法(ant lion optimization with Levy flight and Cauchy mutation,LCALO),该算法采用基于莱维飞行和柯西变异来解决这类问题。莱维飞行可以提高算法的全局搜索能力,而柯西变异有助于避免陷入局部最优。结果表明,相比于遗传算法、粒子群算法和蚁狮算法,LCALO的收敛速度快,具有全局搜索能力和局部开发能力好的优点。最后将改进算法应用于黄酒发酵模型的参数辨识,仿真结果证明该算法具有较好的参数辨识能力。展开更多
A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. ...A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.展开更多
The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repai...The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft.展开更多
Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the ch...Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.展开更多
Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft ...Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.展开更多
In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopt...In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.展开更多
文摘节点定位是无线传感器网络中最为关键的一项技术。针对无源定位的问题,提出一种到达时间差(TDOA)和到达信号增益比(GROA)联合定位算法,并且采用飞行机制的萤火虫算法(GSO)来求得最终结果。结合TDOA和GROA定位模型,引入辅助变量将方程伪线性化;然后采用修正两步加权最小二乘算法(TSWLS)来进行求解。并且在不影响收敛速度和精度的前提下,采用带有飞行机制的GSO算法来寻求目标定位的最优解,克服粒子群算法易陷入局部最优的缺点。仿真结果表明,该算法相比较TDOA算法,定位精度提高了23 d B,并且具有相对较高和较稳定的定位精度。
文摘针对基于Levenberg-Marquardt方法辨识黄酒发酵过程模型参数时易陷入局部最优,收敛速度慢,很难准确获取具有强泛化能力的模型参数的问题,提出了一种具有莱维飞行机制和柯西变异的蚁狮优化算法(ant lion optimization with Levy flight and Cauchy mutation,LCALO),该算法采用基于莱维飞行和柯西变异来解决这类问题。莱维飞行可以提高算法的全局搜索能力,而柯西变异有助于避免陷入局部最优。结果表明,相比于遗传算法、粒子群算法和蚁狮算法,LCALO的收敛速度快,具有全局搜索能力和局部开发能力好的优点。最后将改进算法应用于黄酒发酵模型的参数辨识,仿真结果证明该算法具有较好的参数辨识能力。
文摘A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.
文摘The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft.
文摘Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.
文摘Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.
基金Project(51705243)supported by National Natural Science Foundation of ChinaProject(NS2020052)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GZKF-201915)supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,China。
文摘In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.