期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进随机森林的高光谱激光雷达信号分选研究
1
作者 刘子恒 刘汉城 敏乾 《激光杂志》 CAS 北大核心 2024年第8期218-223,共6页
高光谱激光雷达数据在频谱维度上具有很高的维度,包含大量的波段或频带,易出现忽视频谱带中有用信息的情况,进而导致高光谱激光雷达信号分选效果较差。为此,提出基于改进随机森林的高光谱激光雷达信号分选研究。首先,采用变分模态分解... 高光谱激光雷达数据在频谱维度上具有很高的维度,包含大量的波段或频带,易出现忽视频谱带中有用信息的情况,进而导致高光谱激光雷达信号分选效果较差。为此,提出基于改进随机森林的高光谱激光雷达信号分选研究。首先,采用变分模态分解算法对高光谱激光雷达含噪信号展开去噪处理;然后,采用长短期记忆神经网络算法对去噪后的高光谱激光雷达信号展开特征提取,并利用自编码神经网络对提取的特征展开重构处理,以获取重构后的雷达信号特征;最后,采用随机森林算法根据高光谱激光雷达信号特征完成信号分选。实验结果表明,所提方法的SNR为30.648 dB,RMSE为0.1498,预测分选类别与实际分选类别几乎一致,分析时间始终未超过5 s,表明所提方法的分选性能较好,具有实用性。 展开更多
关键词 高光谱激光雷达信号 随机森林 变分模态分解算法 长短期记忆神经网络算法 自编码神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部