The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear ...The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear stress. The mechanism and dynamics for the recoils and the recoveries of viscoelastic strains in the extrudate were investigated under the free recovery and dynamic states. It was found that in the course of recovery the free recoil and the growth of die swell in the extrudate may be divided into two recovery regions (instantaneous and delayed regions) and three growth stages (instantaneous, delayed, and ultimate extrudate swelling stages). The free recoil and the extrudate swelling behaviors may be expressed as a function of shear stress. The correlations of instantaneous, delayed, total and ultimate extrudate swell effects to the molecular parameters and the operational variables in the simple shear flow at steady shear stress were derived from the dynamic theory of die swell. Also, two sets of new universal equations on the total extrudate swelling effect (TESE) and ultimate extrudate swelling effect (UESE) were deduced. The first is the universal equation of the logarithmic correlation between the TESE and the growth time under the free and dynamic states; the second is the universal equation of the logarithmic correlation between the UESE and the operational variables under the free and equilibrium states. The first equation was verified by experimental data of PBD with different molecular weights at different operational variables. The second equation was verified by experimental data of HDPE at two temperatures and different operational variables. An excellent agreement result was obtained. The excellent agreement shows that the two universal equations can be used directly to predict the correlations of the TESE and UESE to the growth time, the molecular parameters, and the operational variables under the dynamic and equilibrium states.展开更多
Some boundedness results are established in the setting of homogeneous Morrey-Herz spaces for a class of higher order commutators T^mb,l and M^mb,l generated by fractional integral operators Tl and maximal fractional ...Some boundedness results are established in the setting of homogeneous Morrey-Herz spaces for a class of higher order commutators T^mb,l and M^mb,l generated by fractional integral operators Tl and maximal fractional operators Ml with function b(x) in BMO(R^n), respectively.展开更多
Third generation DNA sequencing relies on monitoring the ionic current blockage during the DNA molecule’s threading through a nanoscale pore.It is still really tough to attain the single base discrimination on a DNA ...Third generation DNA sequencing relies on monitoring the ionic current blockage during the DNA molecule’s threading through a nanoscale pore.It is still really tough to attain the single base discrimination on a DNA strand by merely analyzing the ionic current due to speedy DNA translocation and low spatial resolution.More integrated configurations are pursued to present versatile comparative dissimilarities of the four bases by enhancing the spatial resolution within a DNA molecule translocation event,such as transverse tunneling current,local potential change,and capacitance oriented voltage resonance.In this mini review,the insight is provided into the status quo on several functionalized techniques and methodologies for DNA sequencing and furthermore concluding remark and outlook are presented.展开更多
The molecular characterization of the weighted atomic Hardy space Hw p,q,s is given. As an application, the boundedness of Hilbert transform on the weighted Hardy space is proved.
Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience, The key to r...Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience, The key to realizing functional plasmonie resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostrucmres. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.展开更多
Tip-enhanced Raman spectrum(TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy(AF...Tip-enhanced Raman spectrum(TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy(AFM) system is mainly determined by the metalized tips. Here, we report a fabrication protocol for AFM-TERS tips that incorporate a copper(Cu) primer film between a gold(Au) layer and a Si AFM tip. They were fabricated by coating the Si tip with a 2 nm Cu layer prior to adding a 20 nm Au layer. For top illumination TERS experiments, these tips exhibited superior TERS performance relative to that observed for tips coated with Au only. Samples included graphene, thiophenol and brilliant cresyl blue. The results may derive from the surface roughness of the tip apex and a Cu/Au synergism of local surface plasmon resonances.展开更多
This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with bra...This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with brain science. First, we briefly summarize some of the considerations and the research journey that has led to our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for and our seminal contributions to nanowire- based nanoscience and technology, including the rational design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of "applications" enabled by the capability to control structure, com- position and size from the atomic level upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for brain science, including (i) motivation for nanoelectronics in brain science, (ii) demonstration of nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (iii) the development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single ion channels, (iv) the introduction and demonstration of a new paradigm for innervating cell networks with addressable nanoelectronic arrays in three-dimensions. Last, we conclude with a brief discussion of the exciting and potentially transformative advances expected to come from work at the nanoelectronics-brain interface.展开更多
文摘The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear stress. The mechanism and dynamics for the recoils and the recoveries of viscoelastic strains in the extrudate were investigated under the free recovery and dynamic states. It was found that in the course of recovery the free recoil and the growth of die swell in the extrudate may be divided into two recovery regions (instantaneous and delayed regions) and three growth stages (instantaneous, delayed, and ultimate extrudate swelling stages). The free recoil and the extrudate swelling behaviors may be expressed as a function of shear stress. The correlations of instantaneous, delayed, total and ultimate extrudate swell effects to the molecular parameters and the operational variables in the simple shear flow at steady shear stress were derived from the dynamic theory of die swell. Also, two sets of new universal equations on the total extrudate swelling effect (TESE) and ultimate extrudate swelling effect (UESE) were deduced. The first is the universal equation of the logarithmic correlation between the TESE and the growth time under the free and dynamic states; the second is the universal equation of the logarithmic correlation between the UESE and the operational variables under the free and equilibrium states. The first equation was verified by experimental data of PBD with different molecular weights at different operational variables. The second equation was verified by experimental data of HDPE at two temperatures and different operational variables. An excellent agreement result was obtained. The excellent agreement shows that the two universal equations can be used directly to predict the correlations of the TESE and UESE to the growth time, the molecular parameters, and the operational variables under the dynamic and equilibrium states.
基金the National Natural Science Foundation of China(1057101410571158).
文摘Some boundedness results are established in the setting of homogeneous Morrey-Herz spaces for a class of higher order commutators T^mb,l and M^mb,l generated by fractional integral operators Tl and maximal fractional operators Ml with function b(x) in BMO(R^n), respectively.
基金supported by the National Basic Research Program of China(Grant No.2011CB707605)National Natural Science Foundation of China(Grant Nos.50925519 and 51375092)G.S.Wu was supported by the Scientific Research Foundation of Graduate School of Southeast University
文摘Third generation DNA sequencing relies on monitoring the ionic current blockage during the DNA molecule’s threading through a nanoscale pore.It is still really tough to attain the single base discrimination on a DNA strand by merely analyzing the ionic current due to speedy DNA translocation and low spatial resolution.More integrated configurations are pursued to present versatile comparative dissimilarities of the four bases by enhancing the spatial resolution within a DNA molecule translocation event,such as transverse tunneling current,local potential change,and capacitance oriented voltage resonance.In this mini review,the insight is provided into the status quo on several functionalized techniques and methodologies for DNA sequencing and furthermore concluding remark and outlook are presented.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 19631080, 69735020)
文摘The molecular characterization of the weighted atomic Hardy space Hw p,q,s is given. As an application, the boundedness of Hilbert transform on the weighted Hardy space is proved.
基金supported by the Australian Research Council through the Discovery Early Career Researcher Award Scheme(Grant No.DE120100291)the Discovery Project Scheme(Grant No.DP150102972)
文摘Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience, The key to realizing functional plasmonie resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostrucmres. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.
基金supported by the National Basic Research Program of China(2011YQ03012415,2011CB808700)the National Natural Science Foundation of China(21127901,233010,21121063)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12020100)
文摘Tip-enhanced Raman spectrum(TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy(AFM) system is mainly determined by the metalized tips. Here, we report a fabrication protocol for AFM-TERS tips that incorporate a copper(Cu) primer film between a gold(Au) layer and a Si AFM tip. They were fabricated by coating the Si tip with a 2 nm Cu layer prior to adding a 20 nm Au layer. For top illumination TERS experiments, these tips exhibited superior TERS performance relative to that observed for tips coated with Au only. Samples included graphene, thiophenol and brilliant cresyl blue. The results may derive from the surface roughness of the tip apex and a Cu/Au synergism of local surface plasmon resonances.
文摘This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with brain science. First, we briefly summarize some of the considerations and the research journey that has led to our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for and our seminal contributions to nanowire- based nanoscience and technology, including the rational design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of "applications" enabled by the capability to control structure, com- position and size from the atomic level upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for brain science, including (i) motivation for nanoelectronics in brain science, (ii) demonstration of nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (iii) the development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single ion channels, (iv) the introduction and demonstration of a new paradigm for innervating cell networks with addressable nanoelectronic arrays in three-dimensions. Last, we conclude with a brief discussion of the exciting and potentially transformative advances expected to come from work at the nanoelectronics-brain interface.