The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation...The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.展开更多
The effect of magnetic field and ionizing radiation on the mechanical properties of polymer blends consisting of high density polyethylene (HDPE) and acrylonitrile-butadiene rubber (NBR) has been investigated. The...The effect of magnetic field and ionizing radiation on the mechanical properties of polymer blends consisting of high density polyethylene (HDPE) and acrylonitrile-butadiene rubber (NBR) has been investigated. The purpose of the work was to create HDPE/NBR blend composites of significantly different compositions (with an excess of HDPE, intermediate ones, and with an excess of NBR) and to investigate the role of composition on mechanical deformation properties under the influence of magnetic field. The investigation has importance from the engineering viewpoint, since thermoplastic composite materials have been used as structural elements in thermonuclear and engineering fields, like wires, insulation materials and others, which are frequently subjected to mechanical loadings under the effect of magnetic field greater than 1 T. One part of the blends has been irradiated with 5 MeV accelerated electrons up to absorbed dose D equal to 150 kGy. Unirradiated and the radiation modified blends have been exposed to a constant magnetic field with induction B equal to 1.0 T, 1.5 T and 1.7 T. It is found that the action of magnetic field decreases the elastic modulus of unirradiated materials. Decrement of elastic modulus is reduced with increase of the content of NBR in composites. It is also found that preliminary irradiation noticeably decreases the effect of magnetic field. Data of the influence of the magnetic field, radiation cross-linking, and the ratio of the components on the creep are also obtained.展开更多
Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrate...Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrated PL intensity of QDs observed is negligible at about 10 K and rapidly increases with raising temperature up to 100 K.Through analyzing the PL experimental data of the QDs and wetting layer(WL),we provide direct evidence that there exists a potential barrier,arising from the greater compressive strain surrounding large QDs,which could trap carriers in WL at low temperatures and could be overcome via increasing temperature.展开更多
Direct extrapolation of the strong interaction between quarks in pure perturbative calculation has a problem of thermodynamic inconsistency. A new term determined by thermodynamic consistency requirement could resolve...Direct extrapolation of the strong interaction between quarks in pure perturbative calculation has a problem of thermodynamic inconsistency. A new term determined by thermodynamic consistency requirement could resolve it. This new term plays an important role at lower density in describing the equation of state of quark matter, while it is negligible at high density. Accordingly, the density behavior of the sotmd velocity becomes more reasonable, and the maximum mass of quark stars can be as large as two times the solar mass.展开更多
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
基金Projects supported by The 2nd Stage of Brain Korea and Korea Research Foundation
文摘The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.
文摘The effect of magnetic field and ionizing radiation on the mechanical properties of polymer blends consisting of high density polyethylene (HDPE) and acrylonitrile-butadiene rubber (NBR) has been investigated. The purpose of the work was to create HDPE/NBR blend composites of significantly different compositions (with an excess of HDPE, intermediate ones, and with an excess of NBR) and to investigate the role of composition on mechanical deformation properties under the influence of magnetic field. The investigation has importance from the engineering viewpoint, since thermoplastic composite materials have been used as structural elements in thermonuclear and engineering fields, like wires, insulation materials and others, which are frequently subjected to mechanical loadings under the effect of magnetic field greater than 1 T. One part of the blends has been irradiated with 5 MeV accelerated electrons up to absorbed dose D equal to 150 kGy. Unirradiated and the radiation modified blends have been exposed to a constant magnetic field with induction B equal to 1.0 T, 1.5 T and 1.7 T. It is found that the action of magnetic field decreases the elastic modulus of unirradiated materials. Decrement of elastic modulus is reduced with increase of the content of NBR in composites. It is also found that preliminary irradiation noticeably decreases the effect of magnetic field. Data of the influence of the magnetic field, radiation cross-linking, and the ratio of the components on the creep are also obtained.
基金supported by the Ministry of Science and Technology of China, the National Natural Science Foundation of China (Grant Nos.10471026 and 10874212)the National High Technology Research and Development Program of China (Grant No 2006AA03A107)
文摘Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrated PL intensity of QDs observed is negligible at about 10 K and rapidly increases with raising temperature up to 100 K.Through analyzing the PL experimental data of the QDs and wetting layer(WL),we provide direct evidence that there exists a potential barrier,arising from the greater compressive strain surrounding large QDs,which could trap carriers in WL at low temperatures and could be overcome via increasing temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.11135011 and 11475110)the Key Project from Chinese Academy of Sciences(Grant No.KJCX3-SYW-N2)
文摘Direct extrapolation of the strong interaction between quarks in pure perturbative calculation has a problem of thermodynamic inconsistency. A new term determined by thermodynamic consistency requirement could resolve it. This new term plays an important role at lower density in describing the equation of state of quark matter, while it is negligible at high density. Accordingly, the density behavior of the sotmd velocity becomes more reasonable, and the maximum mass of quark stars can be as large as two times the solar mass.