12%difenoconazole+fluxapyroxad SC(commercial name:Jiangong)was first released by BASF in China in 2016.It has been registered to control many diseases,including pear scab,apple Alternaria leaf spot,tomato early blight...12%difenoconazole+fluxapyroxad SC(commercial name:Jiangong)was first released by BASF in China in 2016.It has been registered to control many diseases,including pear scab,apple Alternaria leaf spot,tomato early blight,cucumber powdery mildew,etc.This study evaluated the bioactivity of Jiangong against Alternaria alternata and explored variations of phyllosphere microorganisms in both asymptomatic and tobacco brown spot leaves at different persistence periods(0,5,10,and 15 days post-fungicide application)using high-throughput sequencing technology.The results indicated that Jiangong effectively inhibited mycelial growth(average EC_(50) value of 0.51μg/mL),conidia germination(average EC_(50) value of 3.47μg/mL),and the carbon metabolism of A.alternata.Both asymptomatic and symptomatic leaves presented complex microbial communities.Higher fungal diversity was noted in asymptomatic leaves,while higher bacterial diversity was found in symptomatic leaves.After application,the diversity and abundance of microbial community structures in both types of leaves changed over time.Fungal microbiome communities showed greater sensitivity than bacterial groups,with the microbiome communities of asymptomatic leaves being more affected than those of symptomatic leaves.Fungal community diversity decreased for both symptomatic and asymptomatic leaves after 5 days of application,while the diversity of fungal community in symptomatic leaves showed an upward trend after 10 days of application.Meanwhile,bacterial community diversity increased in both symptomatic and asymptomatic leaves after 5 days of application but then declined in asymptomatic leaves after 15 days.The abundance of the dominant function group of phyllosphere bacteria(metabolism,genetic information processing,environmental information processing)was not affected by the application of Jiangong.However,the abundance of the dominant function group of phyllosphere fungi(animal pathogen-endophyte-wood saprotroph,endophyte-plant pathogen,plant pathogen-undefined saprotroph)was significantly affected by the application of Jiangong,and high variation was found in symptomatic leaves than that of asymptomatic leaves.The application of Jiangong-induced alterations in the community structure of the tobacco phyllosphere microbiome provides a basis for future tobacco brown spot control strategies based on phyllospheric microecology.展开更多
[Objective] This study was to investigate the effect of atrazine stress on the growth of Pennisetum hydridum. [Method] Pot experiments were conducted to study the effects of atrazine stress (20, 50, 100, 200, 500 mg...[Objective] This study was to investigate the effect of atrazine stress on the growth of Pennisetum hydridum. [Method] Pot experiments were conducted to study the effects of atrazine stress (20, 50, 100, 200, 500 mg/kg) on plant height, biomass, root-shoot ratio and chlorophyll content of P. hydridum. [Results] Low level of atrazine stress (20 and 50 mg/kg) showed no significant effects on plant height and biomass of P. hydridum. Moderate level of atrazine stress (100 and 200 mg/kg) did not show significant effect on plant height, but did on the biomass of P. hydridum. Biomass of P. hydridum stressed by 100 and 200 mg/kg of atrazine was decreased by 34.1% and 36.4% compared with control, respectively. High level of atrazine stress (500 mg/kg) brought significant decrease in plant height(by 40.6%) and biomass(20.0%) of P. hydridum. All levels of atrazine stress showed no significant effects on root-shoot ratio and chlorophyll content of P. hydridum. [Conclusion] Pennisetum hydridum has strong tolerance to atrazine stress.展开更多
Objective The aim was to reveal relationship between lithological character soil and productivity of Cunninghamia lanceolata and lay a foundation for systemic management of C. lanceolata fast-growing and high yield pl...Objective The aim was to reveal relationship between lithological character soil and productivity of Cunninghamia lanceolata and lay a foundation for systemic management of C. lanceolata fast-growing and high yield plantation. Method By using experimental ecology method and variance analysis, the biomass and growth of planting eleven years' C. lanceolata on the soils with six different lithologicel characters were studied. Result The effects of soils with six different lithological characters on the height, diameter growth and biomass of C. lanceolata were different, in which the growth order of C. lanceolata was: Feldspathic quartzy sandstone ( average height 523. 270 cm, average diameter 4.720 cm, average individual biomass 5.059kg) 〉 Basalt ( average height 511. 570 cm, average diameter 4.650 cm, average individual biomass 4.848 kg) 〉 Quartzy sandstone 〉 Blastopsammite 〉 The Quarternary Period red clay 〉 Coal-series siliceous sand-shale, and the difference was smaller between the last two lithological characters. Conclusion Feldspathic quartzy sandstone and Basalt are beneficial to C. lanceolata.展开更多
基金Supported by China National Tobacco Corporation[No.110202101048(LS-08)]Hundred’Level Innovative Talent Foundation of Guizhou Province(No.GCC[2022]028-1,GCC[2023]108)+2 种基金Guizhou Science Technology Foundation(No.ZK[2021]Key036)the National Natural Science Foundation of China(No.32160522)Guizhou Province Applied Technology Research and Development Funding Post-subsidy Project and Guizhou Tobacco Company(No.2020XM03,2020XM22,2024XM06).
文摘12%difenoconazole+fluxapyroxad SC(commercial name:Jiangong)was first released by BASF in China in 2016.It has been registered to control many diseases,including pear scab,apple Alternaria leaf spot,tomato early blight,cucumber powdery mildew,etc.This study evaluated the bioactivity of Jiangong against Alternaria alternata and explored variations of phyllosphere microorganisms in both asymptomatic and tobacco brown spot leaves at different persistence periods(0,5,10,and 15 days post-fungicide application)using high-throughput sequencing technology.The results indicated that Jiangong effectively inhibited mycelial growth(average EC_(50) value of 0.51μg/mL),conidia germination(average EC_(50) value of 3.47μg/mL),and the carbon metabolism of A.alternata.Both asymptomatic and symptomatic leaves presented complex microbial communities.Higher fungal diversity was noted in asymptomatic leaves,while higher bacterial diversity was found in symptomatic leaves.After application,the diversity and abundance of microbial community structures in both types of leaves changed over time.Fungal microbiome communities showed greater sensitivity than bacterial groups,with the microbiome communities of asymptomatic leaves being more affected than those of symptomatic leaves.Fungal community diversity decreased for both symptomatic and asymptomatic leaves after 5 days of application,while the diversity of fungal community in symptomatic leaves showed an upward trend after 10 days of application.Meanwhile,bacterial community diversity increased in both symptomatic and asymptomatic leaves after 5 days of application but then declined in asymptomatic leaves after 15 days.The abundance of the dominant function group of phyllosphere bacteria(metabolism,genetic information processing,environmental information processing)was not affected by the application of Jiangong.However,the abundance of the dominant function group of phyllosphere fungi(animal pathogen-endophyte-wood saprotroph,endophyte-plant pathogen,plant pathogen-undefined saprotroph)was significantly affected by the application of Jiangong,and high variation was found in symptomatic leaves than that of asymptomatic leaves.The application of Jiangong-induced alterations in the community structure of the tobacco phyllosphere microbiome provides a basis for future tobacco brown spot control strategies based on phyllospheric microecology.
基金Supported by Natural Science Foundation of Yunnan Province(2010CD058)~~
文摘[Objective] This study was to investigate the effect of atrazine stress on the growth of Pennisetum hydridum. [Method] Pot experiments were conducted to study the effects of atrazine stress (20, 50, 100, 200, 500 mg/kg) on plant height, biomass, root-shoot ratio and chlorophyll content of P. hydridum. [Results] Low level of atrazine stress (20 and 50 mg/kg) showed no significant effects on plant height and biomass of P. hydridum. Moderate level of atrazine stress (100 and 200 mg/kg) did not show significant effect on plant height, but did on the biomass of P. hydridum. Biomass of P. hydridum stressed by 100 and 200 mg/kg of atrazine was decreased by 34.1% and 36.4% compared with control, respectively. High level of atrazine stress (500 mg/kg) brought significant decrease in plant height(by 40.6%) and biomass(20.0%) of P. hydridum. All levels of atrazine stress showed no significant effects on root-shoot ratio and chlorophyll content of P. hydridum. [Conclusion] Pennisetum hydridum has strong tolerance to atrazine stress.
基金Supported by the National Key Technology R&D Program during the11~(th)Five-years Plan(2006BAD24B0301)~~
文摘Objective The aim was to reveal relationship between lithological character soil and productivity of Cunninghamia lanceolata and lay a foundation for systemic management of C. lanceolata fast-growing and high yield plantation. Method By using experimental ecology method and variance analysis, the biomass and growth of planting eleven years' C. lanceolata on the soils with six different lithologicel characters were studied. Result The effects of soils with six different lithological characters on the height, diameter growth and biomass of C. lanceolata were different, in which the growth order of C. lanceolata was: Feldspathic quartzy sandstone ( average height 523. 270 cm, average diameter 4.720 cm, average individual biomass 5.059kg) 〉 Basalt ( average height 511. 570 cm, average diameter 4.650 cm, average individual biomass 4.848 kg) 〉 Quartzy sandstone 〉 Blastopsammite 〉 The Quarternary Period red clay 〉 Coal-series siliceous sand-shale, and the difference was smaller between the last two lithological characters. Conclusion Feldspathic quartzy sandstone and Basalt are beneficial to C. lanceolata.