超像素分割已成为遥感影像预处理研究的新热点,但易形成过分割。为解决该问题,提出一种结合超像素和图论的高空间分辨率遥感影像分割方法。首先,采用简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对遥感影像生成超像...超像素分割已成为遥感影像预处理研究的新热点,但易形成过分割。为解决该问题,提出一种结合超像素和图论的高空间分辨率遥感影像分割方法。首先,采用简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对遥感影像生成超像素过分割影像;然后,采用图论算法对超像素进行合并,通过计算得到每次合并后的分割数对应的局部方差,确定合适的影像分割数;最后,根据合适的影像分割数用图论算法对超像素重新聚类合并。实验数据为4幅不同空间分辨率、不同场景的遥感影像,采用定性和定量相结合的方法评价实验结果。实验结果表明,该方法能有效地解决遥感影像过分割结果的问题,获得了良好的分割结果。展开更多
针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割...针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。展开更多
文摘超像素分割已成为遥感影像预处理研究的新热点,但易形成过分割。为解决该问题,提出一种结合超像素和图论的高空间分辨率遥感影像分割方法。首先,采用简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对遥感影像生成超像素过分割影像;然后,采用图论算法对超像素进行合并,通过计算得到每次合并后的分割数对应的局部方差,确定合适的影像分割数;最后,根据合适的影像分割数用图论算法对超像素重新聚类合并。实验数据为4幅不同空间分辨率、不同场景的遥感影像,采用定性和定量相结合的方法评价实验结果。实验结果表明,该方法能有效地解决遥感影像过分割结果的问题,获得了良好的分割结果。
文摘针对R-cut(Ratio cut)边缘检测分割模型对高分辨率遥感影像分割时存在过分割和模糊边缘敏感性问题,提出了一种多尺度R-cut(Multi-scale ratio cut,MSR-cut)的遥感影像边缘检测分割方法。首先,采用形态重建的分水岭分割算法对影像过分割,形成多个超像素区域;然后计算并提取影像各个区域的纹理特征信息熵值、光谱特征与邻域均值差分归一化值,分别进行同质性和异质性的有效衡量;并构建评价函数获取最优分割尺度,对这些超像素区域进行初步合并,得到影像的粗分割结果;最后结合各地物的边界权重信息,从全局角度用R-cut的方法对粗分割结果进一步合并,完成对影像的精细分割,生成最终的分割结果。实验选取5个不同场景的高分辨率遥感影像,采用定性和定量两种方法对比分析本文方法与传统R-cut边缘检测分割、Spectral-Rcut边缘检测分割和Textured-Rcut边缘检测分割方法。实验结果表明,MSR-cut边缘检测分割方法能够有效提高分割精度,增强噪声鲁棒性,可取得较好的分割视觉效果。