电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数...电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数电压对芯片温度进行实时检测,并与带隙基准电路输出端的不同基准电压分别进行比较得到4个逻辑翻转点,进而通过高精度比较器电路和迟滞逻辑电路处理后,输出迟滞逻辑信号来控制芯片的工作状态或进行温度过低提醒。基于0.18μm BCD(Bipolar-Complementary Metal Oxied Semiconductor-Double diffused Metal Oxide Semiconductor)工艺设计并完成了相关仿真验证,仿真结果表明,在电源电压范围为3.0~5.5 V时,该电路输出端的迟滞逻辑翻转信号对应的温度阈值最大偏移量在0.3℃以内,具备较高的精度,可广泛集成于各种需要过温保护功能的电源管理芯片。展开更多
文摘为解决当前常用煤矿氧气检测仪器易受交叉气体干扰且功耗大的问题,基于GD32F303RCT6微控制器和ADN8834热电冷却控制器,设计了一种软启动开关电路控制的垂直腔面发射激光器(Vertical-cavity Surface-emitting Laser,VCSEL)高精度驱动及温控电路。驱动电路中,高频正弦波信号和低频锯齿波信号叠加的二进制数据由微控制器产生,经信号发生电路、电压电流转换电路转化成VCSEL高精度驱动电流信号;温控电路中,设计基于比例积分微分(Proportional Integral Differential,PID)补偿电路和数模转换控制器(Digital to Analog Converter,DAC)目标温度控制电路实现激光器温度自动调节。测试结果表明:驱动电路的电流输出区间为0.680~1.360 mA;锯齿波频率误差小于0.5%,正弦波频率误差小于0.1%;氧气吸收峰扫描精度高达0.07 pm,对应电流扫描精度为0.12μA;温控电路的温度控制精度为±0.012℃。满足了可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)煤矿氧气检测应用需求。
文摘电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数电压对芯片温度进行实时检测,并与带隙基准电路输出端的不同基准电压分别进行比较得到4个逻辑翻转点,进而通过高精度比较器电路和迟滞逻辑电路处理后,输出迟滞逻辑信号来控制芯片的工作状态或进行温度过低提醒。基于0.18μm BCD(Bipolar-Complementary Metal Oxied Semiconductor-Double diffused Metal Oxide Semiconductor)工艺设计并完成了相关仿真验证,仿真结果表明,在电源电压范围为3.0~5.5 V时,该电路输出端的迟滞逻辑翻转信号对应的温度阈值最大偏移量在0.3℃以内,具备较高的精度,可广泛集成于各种需要过温保护功能的电源管理芯片。