期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进高维数据相似度的目标意图识别方法 被引量:7
1
作者 曹思远 刘以安 薛松 《传感器与微系统》 CSCD 2017年第5期25-28,共4页
对于实际战场中目标属性要素呈现出的多样化,传统目标意图识别方法不能够较全面地建立属性之间的相似度模型。为了更好地阐述实际战场的复杂情况,提高目标意图识别的准确度,提出了一种利用改进的空间相似度与属性相似度融合的高维数据... 对于实际战场中目标属性要素呈现出的多样化,传统目标意图识别方法不能够较全面地建立属性之间的相似度模型。为了更好地阐述实际战场的复杂情况,提高目标意图识别的准确度,提出了一种利用改进的空间相似度与属性相似度融合的高维数据相似度模型,以全面地计算目标各种属性状态对态势意图的支持程度,再利用得到的高维数据相似度通过D-S证据理论对目标进行序贯识别。仿真实验表明:该方法具有有效性以及能够提高目标意图识别的准确度,为解决目标战术意图识别提供了新的方法。 展开更多
关键词 意图识别 高维数据相似度 证据理论
下载PDF
Similarity measure design for high dimensional data 被引量:3
2
作者 LEE Sang-hyuk YAN Sun +1 位作者 JEONG Yoon-su SHIN Seung-soo 《Journal of Central South University》 SCIE EI CAS 2014年第9期3534-3540,共7页
Information analysis of high dimensional data was carried out through similarity measure application. High dimensional data were considered as the a typical structure. Additionally, overlapped and non-overlapped data ... Information analysis of high dimensional data was carried out through similarity measure application. High dimensional data were considered as the a typical structure. Additionally, overlapped and non-overlapped data were introduced, and similarity measure analysis was also illustrated and compared with conventional similarity measure. As a result, overlapped data comparison was possible to present similarity with conventional similarity measure. Non-overlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considering high dimensional data analysis was designed with consideration of neighborhoods information. Conservative and strict solutions were proposed. Proposed similarity measure was applied to express financial fraud among multi dimensional datasets. In illustrative example, financial fraud similarity with respect to age, gender, qualification and job was presented. And with the proposed similarity measure, high dimensional personal data were calculated to evaluate how similar to the financial fraud. Calculation results show that the actual fraud has rather high similarity measure compared to the average, from minimal 0.0609 to maximal 0.1667. 展开更多
关键词 high dimensional data similarity measure DIFFERENCE neighborhood information financial fraud
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部