The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the ...The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.展开更多
In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-...In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-resolved cases.Firstly,the spectral property of the DG method is analyzed using the approximate dispersion relation(ADR)method and compared with typical finite difference methods,which reveals quantitatively that significantly less grid points can be used with DG for comparable numerical error.Then several typical test cases relevant to problems of compressible turbulence are simulated,including one-dimensional shock/entropy wave interaction,two-dimensional decaying isotropic turbulence,and two-dimensional temporal mixing layers.Numerical results indicate that higher numerical accuracy can be achieved on the same number of degrees of freedom with DG than high order finite difference schemes.Furthermore,shocks are also well captured using the localized artificial diffusivity method.The results in this work can provide useful guidance for further applications of DG to direct and large eddy simulation of compressible turbulent flows.展开更多
This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional conv...This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.展开更多
文摘The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.
基金supported by the National Basic Research Program of China(Grant No.2009CB724104)
文摘In this paper,the discontinuous Galerkin(DG)method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-resolved cases.Firstly,the spectral property of the DG method is analyzed using the approximate dispersion relation(ADR)method and compared with typical finite difference methods,which reveals quantitatively that significantly less grid points can be used with DG for comparable numerical error.Then several typical test cases relevant to problems of compressible turbulence are simulated,including one-dimensional shock/entropy wave interaction,two-dimensional decaying isotropic turbulence,and two-dimensional temporal mixing layers.Numerical results indicate that higher numerical accuracy can be achieved on the same number of degrees of freedom with DG than high order finite difference schemes.Furthermore,shocks are also well captured using the localized artificial diffusivity method.The results in this work can provide useful guidance for further applications of DG to direct and large eddy simulation of compressible turbulent flows.
基金supported by Natural Science Foundation of China (Grant No. 10871044)
文摘This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.