高雷诺数壁湍流(high Reynolds number wall-bounded turbulence,HRNWT)是目前湍流科学研究的一个热点也是一个难点,对其现象、规律及机制的认知不足,理论体系远未建立而且研究手段受到各种限制.本文基于对HRNWT主要研究手段的介绍,针对...高雷诺数壁湍流(high Reynolds number wall-bounded turbulence,HRNWT)是目前湍流科学研究的一个热点也是一个难点,对其现象、规律及机制的认知不足,理论体系远未建立而且研究手段受到各种限制.本文基于对HRNWT主要研究手段的介绍,针对HRNWT中的湍流统计量、超大尺度结构(very large scale motions,VLSMs)的尺度和形态以及起源和影响及其与颗粒的相互作用,总结了HRNWT的研究现状和最新进展,特别梳理了近年来本文作者团队在HRNWT特别是高雷诺数颗粒两相壁湍流方面的研究成果,并对HRNWT的进一步研究给出了建议及展望.展开更多
Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical re...Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computational results show that the widely used standard k-ε turbulence closure is not suitable for such kind of study,while the other two-equation turbulence closure models produce acceptable results.The influence of the different advection schemes on the final results are small compared to that produced by the choice of turbulence closure method. The present study serves as a reference for the choice of advection schemes and turbulence closure models for more complex numerical simulation of the flow around a circular cylinder at high Reynolds number.展开更多
Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent fl...Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent flow controlled by large eddy,in which the effect of small eddy could be negligible as an approximation.The grid dimension could easily satisfy the resolution requirement to describe the characteristics of a large eddy flow.Therefore,direct numerical simulation of N-S equations to obtain the turbulent flow field on the coarse grid could be realized.Numerical simulation of a two-dimensional flow over a backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on the efficient operator-splitting method(OSFEM).The flow field was descretized by triangle meshes with 16669 nodes.The overall computational time only took 150 min on a PC.Both the characteristics of time-averaged and instantaneous turbulent flow were simultaneously obtained.The analysis showed that the calculated results were in good agreement with the test data.Hence,the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in practical engineering.展开更多
In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a c...In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.展开更多
Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixin...Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixing region. The former goal suffices for some purposes, while important problems of chemical reactions(e.g. flames) and nuclear reactions depend critically on the second goal in addition to the first one. Here we review recent progress in establishing a conceptual reformulation of convergence, and we illustrate these concepts with a review of recent numerical studies addressing turbulence and mixing in the high Reynolds number limit. We review significant progress on the first goal, regarding the mixing region, and initial progress on the second goal, regarding atomic level mixing properties. New results concerning non-uniqueness of the infinite Reynolds number solutions and other consequences of a renormalization group point of view, to be published in detail elsewhere, are summarized here.The notion of stochastic convergence(of probability measures and probability distribution functions) replaces traditional pointwise convergence. The primary benefit of this idea is its increased stability relative to the statistical "noise" which characterizes turbulent flow. Our results also show that this modification of convergence, with sufficient mesh refinement, may not be needed. However, in practice, mesh refinement is seldom sufficient and the stochastic convergence concepts have a role.Related to this circle of ideas is the observation that turbulent mixing, in the limit of high Reynolds number, appears to be non-unique. Not only have multiple solutions been observed(and published) for identical problems, but simple physics based arguments and more refined arguments based on the renormalization group come to the same conclusion.Because of the non-uniqueness inherent in numerical models of high Reynolds number turbulence and mixing, we also include here numerical examples of validation. The algorithm we use here has two essential components. We depend on Front Tracking to allow accurate resolution of flows with sharp interfaces or steep gradients(concentration or thermal), as are common in turbulent mixing problems. The higher order and enhanced algorithms for interface tracking, both those already developed, and those proposed here, allow a high resolution and uniquely accurate description of sample mixing problems. Additionally, we depend on the use of dynamic subgrid scale models to set otherwise missing values for turbulent transport coefficients, a step that breaks the non-uniqueness.展开更多
文摘高雷诺数壁湍流(high Reynolds number wall-bounded turbulence,HRNWT)是目前湍流科学研究的一个热点也是一个难点,对其现象、规律及机制的认知不足,理论体系远未建立而且研究手段受到各种限制.本文基于对HRNWT主要研究手段的介绍,针对HRNWT中的湍流统计量、超大尺度结构(very large scale motions,VLSMs)的尺度和形态以及起源和影响及其与颗粒的相互作用,总结了HRNWT的研究现状和最新进展,特别梳理了近年来本文作者团队在HRNWT特别是高雷诺数颗粒两相壁湍流方面的研究成果,并对HRNWT的进一步研究给出了建议及展望.
基金the support by the National Basic Research Program of China(Nos.2009CB421201,2011CB403501)the National Natural Science Foundation of China(Nos.40876012,41076007)
文摘Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computational results show that the widely used standard k-ε turbulence closure is not suitable for such kind of study,while the other two-equation turbulence closure models produce acceptable results.The influence of the different advection schemes on the final results are small compared to that produced by the choice of turbulence closure method. The present study serves as a reference for the choice of advection schemes and turbulence closure models for more complex numerical simulation of the flow around a circular cylinder at high Reynolds number.
基金supported by the Major National Science and Technology Projects of China (Grant No. 2012ZX07506003)the Public Research and Development Project for Water Resource (Grant No. 201001030)
文摘Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent flow controlled by large eddy,in which the effect of small eddy could be negligible as an approximation.The grid dimension could easily satisfy the resolution requirement to describe the characteristics of a large eddy flow.Therefore,direct numerical simulation of N-S equations to obtain the turbulent flow field on the coarse grid could be realized.Numerical simulation of a two-dimensional flow over a backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on the efficient operator-splitting method(OSFEM).The flow field was descretized by triangle meshes with 16669 nodes.The overall computational time only took 150 min on a PC.Both the characteristics of time-averaged and instantaneous turbulent flow were simultaneously obtained.The analysis showed that the calculated results were in good agreement with the test data.Hence,the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in practical engineering.
基金supported by the University of Macao(Grant No.MYRG157(Y3-L2)-FST11-WZS)the National Natural Science Foundation of China(Grant No.11132005),+1 种基金MOST-2011BAK07B01-03,LIAMA Project TIPEthe National Laboratory for Information Science and Technology
文摘In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.
基金supported in part by the Nuclear Energy University Program of the Department of Energy,project NEUP-09-349,Battelle Energy Alliance LLC 00088495(subaward with DOE as prime sponsor),Leland Stanford Junior University 2175022040367A(subaward with DOE asprime sponsor),Army Research Office W911NF0910306This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory,which is supported by the Office of Science of the U.S.Department of Energy under contract DE-AC02-06CH11357.Stony Brook University Preprint number SUNYSB-AMS-12-04
文摘Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixing region. The former goal suffices for some purposes, while important problems of chemical reactions(e.g. flames) and nuclear reactions depend critically on the second goal in addition to the first one. Here we review recent progress in establishing a conceptual reformulation of convergence, and we illustrate these concepts with a review of recent numerical studies addressing turbulence and mixing in the high Reynolds number limit. We review significant progress on the first goal, regarding the mixing region, and initial progress on the second goal, regarding atomic level mixing properties. New results concerning non-uniqueness of the infinite Reynolds number solutions and other consequences of a renormalization group point of view, to be published in detail elsewhere, are summarized here.The notion of stochastic convergence(of probability measures and probability distribution functions) replaces traditional pointwise convergence. The primary benefit of this idea is its increased stability relative to the statistical "noise" which characterizes turbulent flow. Our results also show that this modification of convergence, with sufficient mesh refinement, may not be needed. However, in practice, mesh refinement is seldom sufficient and the stochastic convergence concepts have a role.Related to this circle of ideas is the observation that turbulent mixing, in the limit of high Reynolds number, appears to be non-unique. Not only have multiple solutions been observed(and published) for identical problems, but simple physics based arguments and more refined arguments based on the renormalization group come to the same conclusion.Because of the non-uniqueness inherent in numerical models of high Reynolds number turbulence and mixing, we also include here numerical examples of validation. The algorithm we use here has two essential components. We depend on Front Tracking to allow accurate resolution of flows with sharp interfaces or steep gradients(concentration or thermal), as are common in turbulent mixing problems. The higher order and enhanced algorithms for interface tracking, both those already developed, and those proposed here, allow a high resolution and uniquely accurate description of sample mixing problems. Additionally, we depend on the use of dynamic subgrid scale models to set otherwise missing values for turbulent transport coefficients, a step that breaks the non-uniqueness.