准确估计锂离子电池的健康状态(State of Health,SOH)对储能系统的安全稳定运行至关重要。针对传统估计方法准确度较低的问题,提出一种基于鹈鹕优化算法和极限学习机(POA-ELM)的SOH估计方法。首先,选取充放电过程中的四个健康特征,并采...准确估计锂离子电池的健康状态(State of Health,SOH)对储能系统的安全稳定运行至关重要。针对传统估计方法准确度较低的问题,提出一种基于鹈鹕优化算法和极限学习机(POA-ELM)的SOH估计方法。首先,选取充放电过程中的四个健康特征,并采用皮尔逊相关性分析来量化它们与电池SOH的相关性。然后,建立ELM模型来映射健康特征与电池SOH之间的关系。针对ELM模型中超参数寻优问题,采用POA算法进行解决。最后在NASA电池数据集上进行试验分析,并与其他经典超参数寻优算法进行了比较。实验结果表明该方法能够实现SOH的准确估计,具有较高的估计准确度,估计误差稳定在2%以内。展开更多
文摘准确估计锂离子电池的健康状态(State of Health,SOH)对储能系统的安全稳定运行至关重要。针对传统估计方法准确度较低的问题,提出一种基于鹈鹕优化算法和极限学习机(POA-ELM)的SOH估计方法。首先,选取充放电过程中的四个健康特征,并采用皮尔逊相关性分析来量化它们与电池SOH的相关性。然后,建立ELM模型来映射健康特征与电池SOH之间的关系。针对ELM模型中超参数寻优问题,采用POA算法进行解决。最后在NASA电池数据集上进行试验分析,并与其他经典超参数寻优算法进行了比较。实验结果表明该方法能够实现SOH的准确估计,具有较高的估计准确度,估计误差稳定在2%以内。