Pre-harvest water deficit(PHWD)plays an important role in sugar accumulation of citrus fruit.However,the mechanism is not known well.Here,it was confirmed that PHWD promoted sucrose accumulation of citrus fruit,but ha...Pre-harvest water deficit(PHWD)plays an important role in sugar accumulation of citrus fruit.However,the mechanism is not known well.Here,it was confirmed that PHWD promoted sucrose accumulation of citrus fruit,but had limited effect on fructose,glucose and total acid.A sucrose transporter,Cs SUT1,which localizes to the plasma membrane,was demonstrated to function in sucrose transport induced by PHWD.Compared to wild-type,Cs SUT1 overexpression in citrus calli stimulated sucrose,fructose and glucose accumulation,while its silencing in juice sacs reduced sucrose accumulation.Increased sugar accumulation in transgenic lines enhanced plant drought tolerance,and resulted in decreased electrolyte leakage,malondialdehyde and hydrogen peroxide contents,as well as increased superoxide dismutase activity and proline contents.An abscisic acid(ABA)-responsive transcription factor,Cs ABF3,was found with a same expression pattern with Cs SUT1 under PHWD.Yeast one-hybrid,electrophoretic mobility shift assay and dual-luciferase assays all revealed that Cs ABF3 directly bound with the Cs SUT1 promoter by ABA responsive elements.When Cs ABF3 was overexpressed in citrus calli,the sucrose,fructose and glucose concentration increased correspondingly.Further,transgenic studies demonstrated that Cs ABF3 could affect sucrose accumulation by regulating Cs SUT1.Overall,this study revealed a regulation of Cs ABF3 promoting Cs SUT1 expression and sucrose accumulation in response to PHWD.Our results provide a detail insight into the quality formation of citrus fruit.展开更多
Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeos...Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.展开更多
Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibi...Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibition includes scavengers of reactive carbonyl species(RCS)such as methylglyoxal(MG),glyoxalase-1 enhancers,Nrf2/ARE pathway activators,AGE/RAGE formation inhibitors and other antiglycatng agents.Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents.Herein,we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms.Major citrus flavonoids,hesperedin and its aglycone,hesperetin,inhibited glycation by scavenging MG forming mono-or di-flavonoid adducts with MG,enhanced the activity of glyoxase-1,activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway,reduced the formation of Nε-(carboxylmethyl)lysine(CML)and pentosidine,inhibited aldol reductase activity and decreased the levels of fructosamine.The antiglycating activity and mechanisms of other flavonoids was also summarized in this review.In conclusion,citrus flavonoids possess effective antiglycating activity via different mechanisms,yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy,effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases,diabetic complications in particular.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32172520)the earmarked fund for China Agriculture Research System(Grant No.CARS-26)。
文摘Pre-harvest water deficit(PHWD)plays an important role in sugar accumulation of citrus fruit.However,the mechanism is not known well.Here,it was confirmed that PHWD promoted sucrose accumulation of citrus fruit,but had limited effect on fructose,glucose and total acid.A sucrose transporter,Cs SUT1,which localizes to the plasma membrane,was demonstrated to function in sucrose transport induced by PHWD.Compared to wild-type,Cs SUT1 overexpression in citrus calli stimulated sucrose,fructose and glucose accumulation,while its silencing in juice sacs reduced sucrose accumulation.Increased sugar accumulation in transgenic lines enhanced plant drought tolerance,and resulted in decreased electrolyte leakage,malondialdehyde and hydrogen peroxide contents,as well as increased superoxide dismutase activity and proline contents.An abscisic acid(ABA)-responsive transcription factor,Cs ABF3,was found with a same expression pattern with Cs SUT1 under PHWD.Yeast one-hybrid,electrophoretic mobility shift assay and dual-luciferase assays all revealed that Cs ABF3 directly bound with the Cs SUT1 promoter by ABA responsive elements.When Cs ABF3 was overexpressed in citrus calli,the sucrose,fructose and glucose concentration increased correspondingly.Further,transgenic studies demonstrated that Cs ABF3 could affect sucrose accumulation by regulating Cs SUT1.Overall,this study revealed a regulation of Cs ABF3 promoting Cs SUT1 expression and sucrose accumulation in response to PHWD.Our results provide a detail insight into the quality formation of citrus fruit.
基金funded by the National Key Research and Development Program of China (Grant No.2022YFD1201600)Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-msxmX1064)+1 种基金Earmarked Funds for the China Agriculture Research System (Grant No.CARS-26)Three-year Action Plan of Xi'an University (Grant No.2021XDJH41)。
文摘Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.
基金support from the High Level Scientific Research Cultivation Project of Huanggang Normal University(202108504)from the National Natural Science Foundation of China(31571832)。
文摘Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibition includes scavengers of reactive carbonyl species(RCS)such as methylglyoxal(MG),glyoxalase-1 enhancers,Nrf2/ARE pathway activators,AGE/RAGE formation inhibitors and other antiglycatng agents.Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents.Herein,we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms.Major citrus flavonoids,hesperedin and its aglycone,hesperetin,inhibited glycation by scavenging MG forming mono-or di-flavonoid adducts with MG,enhanced the activity of glyoxase-1,activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway,reduced the formation of Nε-(carboxylmethyl)lysine(CML)and pentosidine,inhibited aldol reductase activity and decreased the levels of fructosamine.The antiglycating activity and mechanisms of other flavonoids was also summarized in this review.In conclusion,citrus flavonoids possess effective antiglycating activity via different mechanisms,yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy,effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases,diabetic complications in particular.