Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ...Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmet...Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.展开更多
With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ...With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.展开更多
In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All s...In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All single traveling wave solutions to the equation can be obtained. As an example, we give the solutions to (3 + 1)-dimensional breaking soliton equation.展开更多
Using the extended homogeneous balance method, we obtained abundant exact solution structures ofthe (3 + 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation. By means of the leading order term analysis, thenonlinear...Using the extended homogeneous balance method, we obtained abundant exact solution structures ofthe (3 + 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation. By means of the leading order term analysis, thenonlinear transformations of the (3+1)-dimensional NNV equation are given first, and then some special types of singlesolitary wave solution and the multisoliton solutions are constructed.展开更多
We present three families of soliton solutions to the generalized (3+l)-dimensional nonlinear Schrodinger equation with distributed coefficients. We investigate the dynamics of these solitons in nonlinear optics wi...We present three families of soliton solutions to the generalized (3+l)-dimensional nonlinear Schrodinger equation with distributed coefficients. We investigate the dynamics of these solitons in nonlinear optics with some selected parameters. Different shapes of bright solitons, a train of bright solitons and dark solitons are observed. The obtained results may raise the possibilities of relevant experiments and potential applications.展开更多
Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equat...Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryf...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.展开更多
Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solu...New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.展开更多
In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian s...In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.展开更多
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of t...The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.展开更多
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas...In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.展开更多
In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using th...In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian technique, which include rational solutions, soliton solutions, positons and negatons.展开更多
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
文摘Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
基金Supported by the National Natural Science Foundation of China(12001424)the Natural Science Basic Research Program of Shaanxi Province(2021JZ-21)the Fundamental Research Funds for the Central Universities(2020CBLY013)。
文摘Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018)the Undergraduate Innovative Base Program of Zhejiang A & F University
文摘With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.
文摘In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All single traveling wave solutions to the equation can be obtained. As an example, we give the solutions to (3 + 1)-dimensional breaking soliton equation.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province
文摘Using the extended homogeneous balance method, we obtained abundant exact solution structures ofthe (3 + 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation. By means of the leading order term analysis, thenonlinear transformations of the (3+1)-dimensional NNV equation are given first, and then some special types of singlesolitary wave solution and the multisoliton solutions are constructed.
基金supported by the Zhejiang Provincial Natural Science Foundations,China(Grant No.Y6090592)the National Natural Science Foundation of China(Grant Nos.11041003 and 10735030)+1 种基金the Ningbo Natural Science Foundation,China(Grant Nos.2010A610095,2010A610103,and 2009B21003)K.C.Wong Magna Fund in Ningbo University,China
文摘We present three families of soliton solutions to the generalized (3+l)-dimensional nonlinear Schrodinger equation with distributed coefficients. We investigate the dynamics of these solitons in nonlinear optics with some selected parameters. Different shapes of bright solitons, a train of bright solitons and dark solitons are observed. The obtained results may raise the possibilities of relevant experiments and potential applications.
文摘Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica.
基金The project supported by National Natural Science Foundation of China
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.
基金The project supported by Scientific Research Fund of Heilongjiang Province of China under Grant No. 11511008The author would like to thank referees for their valuable suggestions.
文摘Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
文摘New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10771196 and 10831003the Natural Science Foundation of Zhejiang Province under Grant Nos.Y7080198 and R6090109
文摘In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.
文摘Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
文摘The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 20080013006Chinese Ministry of Education, by the National Natural Science Foundation of China under Grant No. 60772023+2 种基金by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901
文摘In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.
文摘In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian technique, which include rational solutions, soliton solutions, positons and negatons.