By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating ...By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.展开更多
利用到达时间差(Time Difference of Arrival,TDOA)和到达频率差(Frequency Difference of Arrival,FDOA)对移动目标进行定位是现代电子战争的重要课题。传统的定位算法由于TDOA/FDOA参数与目标参数存在非线性关系,求解困难且存在初值...利用到达时间差(Time Difference of Arrival,TDOA)和到达频率差(Frequency Difference of Arrival,FDOA)对移动目标进行定位是现代电子战争的重要课题。传统的定位算法由于TDOA/FDOA参数与目标参数存在非线性关系,求解困难且存在初值与收敛性问题。为此提出一种结合两步加权最小二乘法(Two-Stage Weighted Least Squares,TSWLS)与偏差补偿的定位算法,这种结合算法先建立一组关于TDOA与FDOA的线性方程,再利用泰勒级数展开算法线性化中间变量,计算偏差值,用线性方程的解减去偏差值得到最终解,算法的解为闭式解不存在收敛问题。仿真证明,结合算法优于传统TSWLS算法,在低噪声环境下可以达到克拉美罗界(Cramér-Rao Lower Bound,CRLB),同时在大噪声环境下也能保持良好的鲁棒性,且目标距离越近,观测点阵的大小越大,定位性能越好。展开更多
针对多星定位系统对地面静态目标的无源定位误差分析问题,运用Fisher信息矩阵、Taylor级数、矩阵理论和统计理论,综合考虑时差、频差、卫星位置误差以及卫星速度误差,推导了到达时间差(time difference of arrival,TDOA)/到达频率差(fre...针对多星定位系统对地面静态目标的无源定位误差分析问题,运用Fisher信息矩阵、Taylor级数、矩阵理论和统计理论,综合考虑时差、频差、卫星位置误差以及卫星速度误差,推导了到达时间差(time difference of arrival,TDOA)/到达频率差(frequency difference of arrival,FDOA)联合定位误差克拉美·罗界(Cramer-Rao lower bound,CRLB)的简单表达式,以及三星单独TDOA定位误差的CRLB,进而给出了避免TDOA定位盲区的良好卫星构型设计的充分条件.理论分析与仿真结果表明:在单独TDOA定位场景下良好的构型能完全消除定位盲区,定位精度随主星-星下点连线与主星-副星连线的夹角逼近90°而逐渐提高;通过引入FDOA与TDOA联合定位也能有效避免定位盲区,提高定位精度.展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program) (2010AA7010422 2011AA7014061)
文摘By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.
文摘利用到达时间差(Time Difference of Arrival,TDOA)和到达频率差(Frequency Difference of Arrival,FDOA)对移动目标进行定位是现代电子战争的重要课题。传统的定位算法由于TDOA/FDOA参数与目标参数存在非线性关系,求解困难且存在初值与收敛性问题。为此提出一种结合两步加权最小二乘法(Two-Stage Weighted Least Squares,TSWLS)与偏差补偿的定位算法,这种结合算法先建立一组关于TDOA与FDOA的线性方程,再利用泰勒级数展开算法线性化中间变量,计算偏差值,用线性方程的解减去偏差值得到最终解,算法的解为闭式解不存在收敛问题。仿真证明,结合算法优于传统TSWLS算法,在低噪声环境下可以达到克拉美罗界(Cramér-Rao Lower Bound,CRLB),同时在大噪声环境下也能保持良好的鲁棒性,且目标距离越近,观测点阵的大小越大,定位性能越好。
文摘针对多星定位系统对地面静态目标的无源定位误差分析问题,运用Fisher信息矩阵、Taylor级数、矩阵理论和统计理论,综合考虑时差、频差、卫星位置误差以及卫星速度误差,推导了到达时间差(time difference of arrival,TDOA)/到达频率差(frequency difference of arrival,FDOA)联合定位误差克拉美·罗界(Cramer-Rao lower bound,CRLB)的简单表达式,以及三星单独TDOA定位误差的CRLB,进而给出了避免TDOA定位盲区的良好卫星构型设计的充分条件.理论分析与仿真结果表明:在单独TDOA定位场景下良好的构型能完全消除定位盲区,定位精度随主星-星下点连线与主星-副星连线的夹角逼近90°而逐渐提高;通过引入FDOA与TDOA联合定位也能有效避免定位盲区,提高定位精度.