Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most pro...Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coceolithophorid E. huxleyi. They are a major cause of coceolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their repli- cation. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coeeolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.展开更多
Small non-protein coding micro-RNAs are regularly exported out of cells, both in health and disease. More than ninety percent of extracellular miRNAs are associated with lower-molecular-mass complexes bound to Argonau...Small non-protein coding micro-RNAs are regularly exported out of cells, both in health and disease. More than ninety percent of extracellular miRNAs are associated with lower-molecular-mass complexes bound to Argonaute 2 (Ago2), nucleophosmin-1 (NPM1) and high density lipoproteins (HDL), whereas the rest (~10%) are membrane-vesicle-encapsulated within exosomes, shedding microvesicles and apoptotic bodies. Regardless of the debate of the nature of circulating miRNA as byproducts of routine cell activities or mediators of cell-cell communication, proper understanding of the molecular behaviors of miRNA in health and disease, is expected to open a new gate for the discovery of new diagnostic tools and possibly therapeutic implementation in the near future.展开更多
基金funded by the Chinese Public Science and Technology Research Funds Projects of Ocean (No. 201305027)the National Natural Science Foundation of China (Nos. 40930847, 41376119)+1 种基金Funds of China Southern Oceano-graphic Research Center (No. 14GZP71NF35)Funds of Provincial Key Laboratory of Food Microbiology and Enzyme Engineering (No. M20140910)
文摘Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coceolithophorid E. huxleyi. They are a major cause of coceolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their repli- cation. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coeeolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.
文摘Small non-protein coding micro-RNAs are regularly exported out of cells, both in health and disease. More than ninety percent of extracellular miRNAs are associated with lower-molecular-mass complexes bound to Argonaute 2 (Ago2), nucleophosmin-1 (NPM1) and high density lipoproteins (HDL), whereas the rest (~10%) are membrane-vesicle-encapsulated within exosomes, shedding microvesicles and apoptotic bodies. Regardless of the debate of the nature of circulating miRNA as byproducts of routine cell activities or mediators of cell-cell communication, proper understanding of the molecular behaviors of miRNA in health and disease, is expected to open a new gate for the discovery of new diagnostic tools and possibly therapeutic implementation in the near future.
文摘油菜菌核病(Sclerotinia sclerotiorum)是油菜生产上最重要的病害之一,其致病性可能来源于基因水平转移(Horizontal gene transfer,HGT).为认识其致病原理和寻找新的真菌抑制剂的靶点,首先通过BLASTp发现其基因XM_001585458.1编码蛋白XP_001585508.1与细菌比对结果中出现低E值3.23e-109和高SCORE值436,暗示存在HGT现象;进一步通过系统进化树的建立,发现该蛋白在进化分枝上更接近于细菌中由Streptomyces sp.C的NZ_CM000832.1基因编码的蛋白ZP_07291173;同时核苷酸组成分析也发现该基因与油菜菌核病菌基因组的碱基组成有较大差别,GC含量提高了14.95%.这些结果证明了XM_001585458.1的确存在基因水平转移事件.结构分析和COG蛋白功能分类显示该HGT序列编码蛋白XP_001585508.1具有FA58C_3(Coagulation factors 5/8 type C domain)、Kelch repeat type 1、Galactose-binding domain-like、Galactose oxidase/kelch,beta-propeller等保守结构域,应为一个膜蛋白并参与多糖代谢,推测该水平转移基因与S.sclerotiorum在侵染植物时进行细胞壁水解和致病性有关.