在大豆油脂过氧化值近红外光谱分析中,利用间隔偏最小二乘法(interval partial least square,iPLS)实现油脂光谱特征波段选择。分别将全谱波段以10个数据点间隔和20个数据点间隔分成若干个小波段,然后对全谱和每个小波段分别用PLS回归建...在大豆油脂过氧化值近红外光谱分析中,利用间隔偏最小二乘法(interval partial least square,iPLS)实现油脂光谱特征波段选择。分别将全谱波段以10个数据点间隔和20个数据点间隔分成若干个小波段,然后对全谱和每个小波段分别用PLS回归建模,用预测残差平方和(predicted residual sum of squares,PRESS)对模型进行评价。结果表明:经过特征波段选择后,50个波长点模型的决定系数、预测误差均方根、相对误差均值分别为0.9791、0.0513和2.12%,有效地减少建模的变量数,预测精度得到提高。展开更多
为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares,iPLS)、联合区间偏最小二乘法(synergy interval partial least squa...为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares,iPLS)、联合区间偏最小二乘法(synergy interval partial least squares,SiPLS)和反向区间偏最小二乘法(backward interval partial least squares,BiPLS),对掺杂不同含量煎炸老油的橄榄油建模分析,并对不同模型比较优选。采集样品400~2500 nm范围内的光谱,对光谱数据进行Savitzky-Golay(SG)平滑去噪。剔除奇异样本后,采用sample set partitioning based on joint X-Y distance(SPXY)法划分样本集,以不同的iPLS优选建模区域,建立煎炸老油含量预测模型。结果表明:对掺杂不同含量煎炸大豆油的橄榄油,采用划分20个区间,选择2个子区间[4,16]建立的SiPLS模型预测效果最好,相关系数(Rp)达0.998 9,预测均方根误差(RMSEP)为0.019 2。对掺杂不同含量煎炸花生油的橄榄油,采用划分20个区间,选择2个子区间[2,16]组合建立的SiPLS和BiPLS模型具有相同的预测效果,预测均方根误差(RMSEF)为0.0120,均优于iPLS模型。此外,与SiPLS模型相比,BiPLS模型运算量少,速度快。由此可见,基于掺杂油样品的可见和近红外透射光谱,分别采用组合区间偏最小二乘法(SiPLS)和反向区间偏最小二乘法(BiPLS)优选建模光谱区域,可以对橄榄油中掺杂煎炸大豆油和煎炸花生油含量进行准确测定。而且,实验过程无需对掺杂油样品进行预处理,无环境污染,操作简单,快速无损。展开更多
文摘在大豆油脂过氧化值近红外光谱分析中,利用间隔偏最小二乘法(interval partial least square,iPLS)实现油脂光谱特征波段选择。分别将全谱波段以10个数据点间隔和20个数据点间隔分成若干个小波段,然后对全谱和每个小波段分别用PLS回归建模,用预测残差平方和(predicted residual sum of squares,PRESS)对模型进行评价。结果表明:经过特征波段选择后,50个波长点模型的决定系数、预测误差均方根、相对误差均值分别为0.9791、0.0513和2.12%,有效地减少建模的变量数,预测精度得到提高。
文摘为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares,iPLS)、联合区间偏最小二乘法(synergy interval partial least squares,SiPLS)和反向区间偏最小二乘法(backward interval partial least squares,BiPLS),对掺杂不同含量煎炸老油的橄榄油建模分析,并对不同模型比较优选。采集样品400~2500 nm范围内的光谱,对光谱数据进行Savitzky-Golay(SG)平滑去噪。剔除奇异样本后,采用sample set partitioning based on joint X-Y distance(SPXY)法划分样本集,以不同的iPLS优选建模区域,建立煎炸老油含量预测模型。结果表明:对掺杂不同含量煎炸大豆油的橄榄油,采用划分20个区间,选择2个子区间[4,16]建立的SiPLS模型预测效果最好,相关系数(Rp)达0.998 9,预测均方根误差(RMSEP)为0.019 2。对掺杂不同含量煎炸花生油的橄榄油,采用划分20个区间,选择2个子区间[2,16]组合建立的SiPLS和BiPLS模型具有相同的预测效果,预测均方根误差(RMSEF)为0.0120,均优于iPLS模型。此外,与SiPLS模型相比,BiPLS模型运算量少,速度快。由此可见,基于掺杂油样品的可见和近红外透射光谱,分别采用组合区间偏最小二乘法(SiPLS)和反向区间偏最小二乘法(BiPLS)优选建模光谱区域,可以对橄榄油中掺杂煎炸大豆油和煎炸花生油含量进行准确测定。而且,实验过程无需对掺杂油样品进行预处理,无环境污染,操作简单,快速无损。