We develop the generalized conditional symmetry (GCS) approach to solve the problem of dimensional reduction of Cauchy problems for the KdV-type equations. We characterize these equations that admit certain higheror...We develop the generalized conditional symmetry (GCS) approach to solve the problem of dimensional reduction of Cauchy problems for the KdV-type equations. We characterize these equations that admit certain higherorder GCSs and show the main reduction procedure by some examples. The obtained reductions cannot be derived within the framework of the standard Lie approach.展开更多
The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. ...The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. Among those, a lot of solutions are new.展开更多
It is proved that rogue waves can be found in Korteweg de-Vries(KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without mo...It is proved that rogue waves can be found in Korteweg de-Vries(KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without modulation instability which is considered as the main formation mechanism of the rogue waves.展开更多
The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be construc...The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.展开更多
基金supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We develop the generalized conditional symmetry (GCS) approach to solve the problem of dimensional reduction of Cauchy problems for the KdV-type equations. We characterize these equations that admit certain higherorder GCSs and show the main reduction procedure by some examples. The obtained reductions cannot be derived within the framework of the standard Lie approach.
基金The project supported by Scientific Reseaxch Fund of Education Department of Heilongjiang Province of China under Grant No. 11511008
文摘The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. Among those, a lot of solutions are new.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675084 and 11435005the K.C.Wong Magna Fund in Ningbo University
文摘It is proved that rogue waves can be found in Korteweg de-Vries(KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without modulation instability which is considered as the main formation mechanism of the rogue waves.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675065)the Scientific Research Fundof the Education Department of Zhejiang Province of China (Grant No. 20070979)
文摘The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.