期刊文献+
共找到1,237篇文章
< 1 2 62 >
每页显示 20 50 100
全科医学理念指导下的无创冠心病诊断方法LVDd联合SDNN新探索
1
作者 余彬 袁明清 +3 位作者 罗潇 曹俊达 徐劲松 李菊香 《吉林医学》 CAS 2024年第11期2638-2642,共5页
目的:探索左室舒张末径(LVDd)联合正常RR间期的标准差(SDNN)作为无创预测方案用于冠心病的诊断价值,为基层医疗单位进行无创冠心病的诊断筛查提供新思路。方法:选取2020~2022年在九江市第一人民医院和南昌大学第二附属医院就诊并进行冠... 目的:探索左室舒张末径(LVDd)联合正常RR间期的标准差(SDNN)作为无创预测方案用于冠心病的诊断价值,为基层医疗单位进行无创冠心病的诊断筛查提供新思路。方法:选取2020~2022年在九江市第一人民医院和南昌大学第二附属医院就诊并进行冠脉造影检查明确冠心病诊断且完善动态心电图检查的323例患者作为研究对象,比较冠心病组与非冠心病组包括病史、血液学检查、彩超检查、动态心电图检查等相关参数在内的一般资料情况。设置是否罹患冠心病作为目标观察事件,对比分析各项参数是否为冠心病诊断的影响因素;进而就相关影响因素的疾病诊断预测价值进行分析。结果:二元Logistic回归分析显示年龄、LVDd、SDNN是冠心病诊断结果的影响因素。LVDd评价冠心病诊断结果的受试者工作特征(ROC)曲线下的面积(AUC)为0.581(95%CI=0.520~0.643),最佳截断值为51.25,灵敏度为0.332,特异度为0.850;SDNN评价冠心病诊断结果的ROC曲线下AUC为0.740(95%CI=0.684~0.795),最佳截断值为100.5,灵敏度为0.821,特异度为0.609;LVDd联合SDNN评价冠心病诊断结果的ROC曲线下AUC为0.762(95%CI=0.708~0.815),最佳截断值为0.459,灵敏度为0.853,特异度为0.541。结论:LVDd联合SDNN对于冠心病的预测诊断价值良好。 展开更多
关键词 左室舒张末径 正常RR间期的标准差 冠心病 预测价值 无创诊断方法
下载PDF
基于ANN模型的内冷型溶液除湿器性能研究
2
作者 罗伊默 常亚银 李念平 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期198-205,共8页
溶液除湿器因可被低品位热能驱动,且具有除湿效率高等优点而受到广泛关注,但其传质性能的预测准确度还有待提高.本文搭建了单通道内冷型溶液除湿实验平台,研究了不同参数对于除湿过程中传质性能的影响,同时,建立了基于MATLAB平台的人工... 溶液除湿器因可被低品位热能驱动,且具有除湿效率高等优点而受到广泛关注,但其传质性能的预测准确度还有待提高.本文搭建了单通道内冷型溶液除湿实验平台,研究了不同参数对于除湿过程中传质性能的影响,同时,建立了基于MATLAB平台的人工神经网络(ANN)模型用于预测传质性能,并用上述实验数据对该ANN模型进行了验证.结果表明,ANN模型预测得出的Sh与实验Sh平均绝对相对偏差(MARD)为4.07%.与现有经验公式相比,建立的ANN模型预测精度更高.此外,还利用ANN模型研究了不同参数变化下的Sh的变化趋势,从而分析不同参数对除湿性能的影响. 展开更多
关键词 机器学习 神经网络 溶液除湿器 参数化研究
下载PDF
基于时频域特征分析和ML-NN的故障电弧检测与选线
3
作者 毛玉明 杨留方 +3 位作者 曹伟嘉 谢宗效 吴自玉 钟安德 《云南民族大学学报(自然科学版)》 CAS 2023年第5期601-608,共8页
针对低压配电系统方式复杂、负载种类繁多、串联故障电弧的检测难度越来越大的问题,提出了1种基于时频域特征分析和多标签神经网络(ML-NN)分类的串联故障电弧检测与选线的方法.该方法通过采集多回路负载的不同支路发生电弧时的干路电流... 针对低压配电系统方式复杂、负载种类繁多、串联故障电弧的检测难度越来越大的问题,提出了1种基于时频域特征分析和多标签神经网络(ML-NN)分类的串联故障电弧检测与选线的方法.该方法通过采集多回路负载的不同支路发生电弧时的干路电流,对其时域采取统计的方法对故障电流的方差、均值、偏度和峰度进行分析,对其频域采用小波变换的方法得到其故障电流的小波系数特征.将时频域特征作为神经网络的输入进行训练,同时采用反向传播方法来训练模型,实现故障电弧检测和故障选线.经过实验验证,故障电弧检测和选线的准确度分别达到了97.57%、99%. 展开更多
关键词 时频域特征 ML-nn 故障选线 小波变换
下载PDF
基于GRU-NN模型的电力用户能耗预测研究 被引量:1
4
作者 王振 《能源与节能》 2023年第12期43-45,198,共4页
针对现有预测方法在对电力用户进行能耗预测时,存在预测精度低、预测时效性差的问题,引入GRU-NN(Gate Recurrent Unit-Neural Networks,门控循环单元-神经网络)模型,开展对电力用户能耗预测方法的设计研究。采集电力用户用电信息,并从... 针对现有预测方法在对电力用户进行能耗预测时,存在预测精度低、预测时效性差的问题,引入GRU-NN(Gate Recurrent Unit-Neural Networks,门控循环单元-神经网络)模型,开展对电力用户能耗预测方法的设计研究。采集电力用户用电信息,并从归一化处理后的信息中提取用电特征。利用GRU-NN,构建能耗预测模型。结合均方误差和拟合优度的概念,对该模型进行训练。利用训练后的模型预测电力用户能耗,模型的输出即为预测结果。通过对比实验,证明新的预测方法预测结果更加接近实际,且预测耗时短,具备较高的时效性,值得广泛应用。 展开更多
关键词 GRU-nn 用户 模型 预测 能耗 电力
下载PDF
基于灰色Elman-NN模型的乡村旅游游客流量预测方法 被引量:1
5
作者 田玉玲 《信息技术》 2023年第8期18-23,共6页
影响乡村旅游游客流量因素较多,导致乡村旅游游客流量预测误差较大,并且效率较低,设计一种基于灰色Elman-NN模型的乡村旅游游客流量预测方法。将所有数据按照一定的顺序排列,选取预测因子,对旅游数据关联度计算,采用灰色Elman-NN模型实... 影响乡村旅游游客流量因素较多,导致乡村旅游游客流量预测误差较大,并且效率较低,设计一种基于灰色Elman-NN模型的乡村旅游游客流量预测方法。将所有数据按照一定的顺序排列,选取预测因子,对旅游数据关联度计算,采用灰色Elman-NN模型实现了乡村旅游游客流量预测。实验结果表明,所研究的基于灰色Elman-NN模型的乡村旅游游客流量预测方法在节假日前与节假日时的客流量预测上误差都较低,并且预测效率较高,满足乡村旅游游客流量预测方法的设计需求。 展开更多
关键词 灰色Elman-nn模型 游客 流量预测 关联度 预测
下载PDF
基于k-NN模型的钢坯入炉温度预测
6
作者 张仁琳 《福建冶金》 2023年第3期24-26,共3页
在中厚板生产中,加热工序是决定后续轧制过程是否稳定的重要环节。同时为了提高经济效益,实现节能减排,加热工序往往会根据原料本身的温度情况来制定相应的加热工艺。换热系数是建立钢坯温降计算模型的核心参数,由于其影响因素繁多且复... 在中厚板生产中,加热工序是决定后续轧制过程是否稳定的重要环节。同时为了提高经济效益,实现节能减排,加热工序往往会根据原料本身的温度情况来制定相应的加热工艺。换热系数是建立钢坯温降计算模型的核心参数,由于其影响因素繁多且复杂,很难有一个固定的模型来计算。本文提出一种简单有效的基于k-NN算法的温度预测模型,寻找目标钢坯与样本钢坯之间的相似度,然后通过IDW加权平均算法,预估出目标钢坯的入炉温度。实际应用表明,模型预测温度与实测温度绝对误差控制在30℃以内的占比达95%以上。 展开更多
关键词 钢坯温度 k-nn模型 温度预测
下载PDF
局灶性癫痫围发作期心率变异性变化特点
7
作者 孙建奎 王群 《河南医学研究》 CAS 2024年第7期1189-1193,共5页
目的探讨局灶性癫痫围发作期心率变异性变化特点。方法收集2014年9月至2019年9月在首都医科大学附属北京天坛医院癫痫中心进行术前评估并完成手术的癫痫患者102例,选择局灶性发作198次,手动测量相邻两个心电活动的RR间期,计算心率变异... 目的探讨局灶性癫痫围发作期心率变异性变化特点。方法收集2014年9月至2019年9月在首都医科大学附属北京天坛医院癫痫中心进行术前评估并完成手术的癫痫患者102例,选择局灶性发作198次,手动测量相邻两个心电活动的RR间期,计算心率变异性时域参数-相邻正常心跳间期差值平方和的均方根(RMSSD),比较发作前60 s、发作期、终止后60 s RMSSD差异,并比较不同心率变化类型、不同发作类型、不同发作前状态以及不同致痫灶部位和侧别RMSSD差异。结果发作期和发作前60 s及终止后60 s RMSSD相比差异有统计学意义(P<0.001),提示发作期RMSSD降低;心率增快类型癫痫发作期RMSSD降低(P<0.001);复杂部分性癫痫发作期RMSSD降低(P<0.001);颞叶内侧癫痫发作期RMSSD降低(右颞叶内侧P<0.001;左颞叶内侧P<0.001);心率无变化(P=0.556)和心率减慢(P=0.983)类型癫痫发作、单纯部分性癫痫(P=0.869)、颞叶外侧癫痫(右颞叶外侧P=0.204;左颞叶外侧P=0.849)和颞叶外癫痫(右颞外P=0.188;左颞外P=0.068)发作期RMSSD无降低。发作期和发作前60 s RMSSD差值在睡眠期更明显(P=0.039)。结论心率增快类型癫痫发作、复杂部分性癫痫、颞叶内侧癫痫发作期易发生心率变异性下降,提示癫痫发作期副交感活性下降;睡眠期状态下发生的癫痫发作期心率变异性下降相比清醒期显著,提示睡眠期癫痫发作副交感活性下降更加明显。 展开更多
关键词 局灶性癫痫 心率变异性 相邻正常心跳间期差值平方和的均方根 颞叶内侧癫痫 颞叶外侧癫痫 颞叶外癫痫
下载PDF
基于k-NN和Landsat数据的小面积统计单元森林蓄积估测方法 被引量:28
8
作者 陈尔学 李增元 +1 位作者 武红敢 韩爱惠 《林业科学研究》 CSCD 北大核心 2008年第6期745-750,共6页
基于吉林省一个试验区的森林资源一类清查固定样地数据、Landsat TM数据和土地利用数据,采用精度交叉评价方法研究了k-最近邻(k-NN)法用于小面积统计单元森林蓄积估计的有效性。结果表明:k-NN方法对样地覆盖区影像像元单位面积蓄积量的... 基于吉林省一个试验区的森林资源一类清查固定样地数据、Landsat TM数据和土地利用数据,采用精度交叉评价方法研究了k-最近邻(k-NN)法用于小面积统计单元森林蓄积估计的有效性。结果表明:k-NN方法对样地覆盖区影像像元单位面积蓄积量的估测平均误差在1.5 m3.hm2之内,相对均方根误差(RMSE′)低于传统的基于绿度指数的线性方程估测方法;采用k-NN方法可以实现县市级统计单元的参数估计,估测效果优于只利用固定样地数据的传统成数估计方法。 展开更多
关键词 k-nn方法 森林蓄积量 LANDSAT 森林资源调查
下载PDF
基于KNN离群点检测和随机森林的多层入侵检测方法 被引量:73
9
作者 任家东 刘新倩 +2 位作者 王倩 何海涛 赵小林 《计算机研究与发展》 EI CSCD 北大核心 2019年第3期566-575,共10页
入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检... 入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检测正常和异常的网络行为.该模型首先应用KNN(K nearest neighbors)离群点检测算法来检测并删除离群数据,从而得到一个小规模和高质量的训练数据集;接下来,结合网络流量的相似性,提出一种类别检测划分方法,该方法避免了异常行为在检测过程中的相互干扰,尤其是对小流量攻击行为的检测;结合这种划分方法,构建多层次的随机森林模型来检测网络异常行为,提高了网络攻击行为的检测效果.流行的数据集KDD(knowledge discovery and data mining) Cup 1999被用来评估所提出的模型.通过与其他算法进行对比,该方法的准确率和检测率要明显优于其他算法,并且能有效地检测Probe,U2R,R2L这3种攻击类型. 展开更多
关键词 网络安全 入侵检测系统 Knn离群点检测 随机森林模型 多层次
下载PDF
一种基于k-NN的案例相似度权重调整算法 被引量:22
10
作者 杨健 杨晓光 +1 位作者 刘晓彬 秦凡 《计算机工程与应用》 CSCD 北大核心 2007年第23期8-11,共4页
对于CBR中的案例检索问题,结合经典案例相似度计算方法,对目前在各实际系统中应用最为广泛的k-NN算法进行改进。经过特征约简,在假设时间因素对历史案例可采纳程度有显著影响基础上,提出了一种小规模的基于时序的案例特征权重多阶段调... 对于CBR中的案例检索问题,结合经典案例相似度计算方法,对目前在各实际系统中应用最为广泛的k-NN算法进行改进。经过特征约简,在假设时间因素对历史案例可采纳程度有显著影响基础上,提出了一种小规模的基于时序的案例特征权重多阶段调整算法。该算法适用于数值型特征项相似度计算。 展开更多
关键词 基于案例推理 案例相似度 案例检索 k-nn算法 特征权重
下载PDF
基于误差分治的神经网络验证
11
作者 董彦松 刘月浩 +4 位作者 董旭乾 赵亮 田聪 于斌 段振华 《软件学报》 EI CSCD 北大核心 2024年第5期2307-2324,共18页
随着神经网络技术的快速发展,其在自动驾驶、智能制造、医疗诊断等安全攸关领域得到了广泛应用,神经网络的可信保障变得至关重要.然而,由于神经网络具有脆弱性,轻微的扰动经常会导致错误的结果,因此采用形式化验证的手段来保障神经网络... 随着神经网络技术的快速发展,其在自动驾驶、智能制造、医疗诊断等安全攸关领域得到了广泛应用,神经网络的可信保障变得至关重要.然而,由于神经网络具有脆弱性,轻微的扰动经常会导致错误的结果,因此采用形式化验证的手段来保障神经网络安全可信是非常重要的.目前神经网络的验证方法主要关注分析的精度,而易忽略运行效率.在验证一些复杂网络的安全性质时,较大规模的状态空间可能会导致验证方法不可行或者无法求解等问题.为了减少神经网络的状态空间,提高验证效率,提出一种基于过近似误差分治的神经网络形式化验证方法.该方法利用可达性分析技术计算非线性节点的上下界,并采用一种改进的符号线性松弛方法减少了非线性节点边界计算过程中的过近似误差.通过计算节点过近似误差的直接和间接影响,将节点的约束进行细化,从而将原始验证问题划分为一组子问题,其混合整数规划(MILP)公式具有较少的约束数量.所提方法已实现为工具NNVerifier,并通过实验在经典的3个数据集上训练的4个基于ReLU的全连接基准网络进行性质验证和评估.实验结果表明,NNVerifier的验证效率比现有的完备验证技术提高了37.18%. 展开更多
关键词 神经网络 模型抽象 符号传播 线性近似 分治
下载PDF
用于大数据分类的KNN算法研究 被引量:62
12
作者 耿丽娟 李星毅 《计算机应用研究》 CSCD 北大核心 2014年第5期1342-1344,1373,共4页
针对KNN算法在处理大数据时的两个不足对其进行了研究,提出多层差分KNN算法。算法对已知样本根据类域进行分层,既避免了传统改进算法中剪辑样本带来的判别误差,又大大降低了无效的计算量;同时在最后一层采用差分的方法进行决策,而不是... 针对KNN算法在处理大数据时的两个不足对其进行了研究,提出多层差分KNN算法。算法对已知样本根据类域进行分层,既避免了传统改进算法中剪辑样本带来的判别误差,又大大降低了无效的计算量;同时在最后一层采用差分的方法进行决策,而不是直接根据最近邻进行分类,大大提高了分类的准确性。实验结果表明,该算法在对样本容量大、涉及邻域多的大数据样本进行分类时能取得较好的分类效果。 展开更多
关键词 大数据 Knn 差分多层
下载PDF
基于DSC后推法的非线性系统的鲁棒自适应NN控制 被引量:21
13
作者 李铁山 邹早建 罗伟林 《自动化学报》 EI CSCD 北大核心 2008年第11期1424-1430,共7页
针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统,提出了一种鲁棒自适应神经网络控制算法.本算法采用RBF神经网络(Radial based function neural network,RBFNN)逼近模型不确定性,外界干扰和建模误差采用非线性阻尼... 针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统,提出了一种鲁棒自适应神经网络控制算法.本算法采用RBF神经网络(Radial based function neural network,RBFNN)逼近模型不确定性,外界干扰和建模误差采用非线性阻尼项进行补偿,将动态面控制(Dynamic surface control,DSC)与后推方法结合,消除了反推法的计算膨胀问题,降低了控制器的复杂性;尤其是采用Nussbaum函数处理系统中方向未知的不确定虚拟控制增益函数,不仅可以避免可能存在的控制器奇异值问题,而且还能使得整个系统的在线学习参数显著减少,与DSC方法优点结合,使得控制算法的计算量大为减少,便于计算机实现.稳定性分析证明了所得闭环系统是半全局一致最终有界(Semi-global uniformly ultimately bounded,SGUUB)的,并且跟踪误差可以收敛到原点的一个较小邻域.最后,计算机仿真结果表明了本文所提出控制器的有效性. 展开更多
关键词 不确定非线性系统 神经网络 动态面控制 自适应控制 NUSSBAUM增益
下载PDF
基于NNs-MRAS无速度传感器双馈电机LQR控制 被引量:6
14
作者 刘毅 谭国俊 +1 位作者 何凤有 安琪 《电工技术学报》 EI CSCD 北大核心 2014年第7期140-146,共7页
针对双馈电机无速度传感器控制系统,提出了一种基于定子磁链的神经网络-模型参考自适应系统(NNs-MRAS)的速度观测法,采用差分算法设计了神经网络(NNs)模型,通过偏差反传算法对神经网络模型进行训练,使其具有良好的转速观测能力;设计了... 针对双馈电机无速度传感器控制系统,提出了一种基于定子磁链的神经网络-模型参考自适应系统(NNs-MRAS)的速度观测法,采用差分算法设计了神经网络(NNs)模型,通过偏差反传算法对神经网络模型进行训练,使其具有良好的转速观测能力;设计了基于两相同步旋转坐标系下转子电流的线性二次型最优控制算法的控制器(LQR),并给出了状态反馈控制增益,实现了电流闭环参数的最优控制,改善了系统的动、静态性能。详尽地推导所述控制方案的实现过程,并通过基于DSP实现的样机试验,验证了控制方案的正确性和有效性。 展开更多
关键词 双馈电机 神经网络 模型参考自适应系统 线性二次型控制器 最优控制
下载PDF
医学图书馆服务的典范——美国NN/LM的服务及其启示 被引量:22
15
作者 张士靖 周彦霞 陶亚萍 《图书馆建设》 CSSCI 北大核心 2008年第3期105-108,共4页
对美国医学图书馆联盟(NN/LM)的服务方式、服务特征和关键因素等进行剖析,发现NN/LM的服务丰富多彩,包括各种文献传递服务、参考咨询服务、培训、继续教育及特色化的外展服务(outreach)、信息处方、临床信息咨询服务等。有许多值得我国... 对美国医学图书馆联盟(NN/LM)的服务方式、服务特征和关键因素等进行剖析,发现NN/LM的服务丰富多彩,包括各种文献传递服务、参考咨询服务、培训、继续教育及特色化的外展服务(outreach)、信息处方、临床信息咨询服务等。有许多值得我国医学图书馆学习和借鉴之处,并对我国医学图书馆的服务提出思考和建议。 展开更多
关键词 美国 医学图书馆联盟 医学图书馆 信息服务
下载PDF
煤与瓦斯突出预测的NN-SVM模型 被引量:16
16
作者 谢国民 谢鸿 +1 位作者 付华 闫孝姮 《传感技术学报》 CAS CSCD 北大核心 2016年第5期733-738,共6页
为提高煤与瓦斯突出预测的精度和速度,通过基于邻域粗糙集(NRS)理论对特征向量降维,提取出影响煤与瓦斯突出的核心致突因素,采用改进的支持向量机(NN-SVM)理论来构建煤与瓦斯突出风险与由各种致突因素组成的特征向量之间的非线性关系。... 为提高煤与瓦斯突出预测的精度和速度,通过基于邻域粗糙集(NRS)理论对特征向量降维,提取出影响煤与瓦斯突出的核心致突因素,采用改进的支持向量机(NN-SVM)理论来构建煤与瓦斯突出风险与由各种致突因素组成的特征向量之间的非线性关系。从而建立了基于邻域粗糙集(NRS)与改进的支持向量机(NN-SVM)相结合的煤与瓦斯突出预测模型。实验结果表明,该预测模型预测精度高,运算速度更快,同时还具有很好的泛化能力。 展开更多
关键词 煤与瓦斯突出 预测模型 邻域粗糙集理论 改进的支持向量机
下载PDF
一种模糊-证据kNN分类方法 被引量:12
17
作者 吕锋 杜妮 文成林 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2390-2395,共6页
已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本... 已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本文提出一种模糊-证据kNN算法.首先,利用特征的模糊熵值确定每个特征的权重,基于加权欧氏距离选取k个邻居;然后,利用邻居的信息熵区别对待邻居并结合FkNN在表示信息和EkNN在融合决策方面的优势,采取先模糊化再融合的方法确定待分类样本的类别.本文的方法在UCI标准数据集上进行了测试,结果表明该方法优于已有算法. 展开更多
关键词 k-最近邻(k-nn) 加权欧氏距离 模糊熵 折扣因子 证据理论
下载PDF
美国NN/LM医学图书馆网的分析和启示 被引量:10
18
作者 张士靖 周满英 刘娜 《医学信息学杂志》 CAS 2008年第1期7-11,共5页
从背景、宗旨、任务、现状、信息服务等方面全面分析美国NN/LM,并提出对我国医学图书馆发展的启示和建议。
关键词 美国nn/LM 信息服务 医学图书馆 启示
下载PDF
液态挤压工艺ANN/GA建模与优化研究 被引量:4
19
作者 齐乐华 侯俊杰 +1 位作者 杨茂奎 李贺军 《西北工业大学学报》 EI CAS CSCD 北大核心 2001年第1期114-117,共4页
利用人工神经网络方法 (ANN)建立了工艺系统模型 ,用遗传算法 (GA)对过程参数进行优化 ,实验结果与预测值吻合良好 ,为预测和控制该工艺成形质量提供了行之有效的手段。
关键词 液态挤压 神经网络 遗传算法 工艺系统模型
下载PDF
一种无线传感器网络中的多维K-NN查询优化算法(英文) 被引量:3
20
作者 赵志滨 于戈 +2 位作者 李斌阳 姚兰 杨晓春 《软件学报》 EI CSCD 北大核心 2007年第5期1186-1197,共12页
提出了一种基于过滤器的无线传感器网络多维K-NN查询优化算法PREDICTOR.过滤器是设置在节点端的取值分布区间,用来屏蔽节点发送属于区间内的数据,从而节省节点能耗.在服务器端保存有各节点的历史样本数据,根据K-NN查询请求和样本数据的... 提出了一种基于过滤器的无线传感器网络多维K-NN查询优化算法PREDICTOR.过滤器是设置在节点端的取值分布区间,用来屏蔽节点发送属于区间内的数据,从而节省节点能耗.在服务器端保存有各节点的历史样本数据,根据K-NN查询请求和样本数据的分布范围为节点定义过滤器.提出了3种优化策略:(1)过滤器覆盖区间大小分配策略的动态调整方法,使得进入最终查询结果可能性小的节点拥有较大的覆盖区间;(2)节点间过滤器共享方法,使得历史样本数据相近的节点使用相同的过滤器;(3)过滤器压缩传输方法,减少为不同K-NN查询更新过滤器的代价.通过实验评价,验证了PREDICTOR算法的能量有效性,与朴素算法相比,极大地降低了数据传输量. 展开更多
关键词 无线传感器网 K-nn 过滤器 压缩
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部