As one of the most important components of the wideband wireless access technique, orthogonal frequency division multiplexing (OFDM) has a high usage rate of spectrum and combats inter-symbol interference (ISI) in...As one of the most important components of the wideband wireless access technique, orthogonal frequency division multiplexing (OFDM) has a high usage rate of spectrum and combats inter-symbol interference (ISI) in multi-path fading channel. However, when there are frequency offsets during the signal transmission, the inter-carrier interference (ICI) is introduced, which significantly degrades the performance. The existing ICI self-cancellation schemes such as PCC-OFDM are not optimum to minimize the interference considering both noise and ICI. In this paper, a new metric named S1NR (signal-to-interference- and-noise ratio) is proposed. We discuss the optimization issue when a constant frequency offset exists and in time-varying channels. The optimum weighting-coefficient-pair (OWCP) is obtained, which maximizes SINR theoretically through the alternant iteration algorithm. Simulations show that the performance of OWCP-OFDM is better than that of PCC-OFDM, especially when the frequency offset is large. Although the ICI self-cancellation scheme suffers bandwidth inefficiency, from the simulation results we can also see that the performance of OWCP-OFDM is much better than that of the standard OFDM systems with the same bandwidth efficiency when a frequency offset exists. Moreover, since the redundant modulation provides the capability to suppress ICI as well as a receiving SNR gain, it can be considered as exchanging the bandwidth for SNR.展开更多
基金Project (No. 2006AA01Z273) supported by the Hi-Tech ResearchDevelopment Program (863) of China
文摘As one of the most important components of the wideband wireless access technique, orthogonal frequency division multiplexing (OFDM) has a high usage rate of spectrum and combats inter-symbol interference (ISI) in multi-path fading channel. However, when there are frequency offsets during the signal transmission, the inter-carrier interference (ICI) is introduced, which significantly degrades the performance. The existing ICI self-cancellation schemes such as PCC-OFDM are not optimum to minimize the interference considering both noise and ICI. In this paper, a new metric named S1NR (signal-to-interference- and-noise ratio) is proposed. We discuss the optimization issue when a constant frequency offset exists and in time-varying channels. The optimum weighting-coefficient-pair (OWCP) is obtained, which maximizes SINR theoretically through the alternant iteration algorithm. Simulations show that the performance of OWCP-OFDM is better than that of PCC-OFDM, especially when the frequency offset is large. Although the ICI self-cancellation scheme suffers bandwidth inefficiency, from the simulation results we can also see that the performance of OWCP-OFDM is much better than that of the standard OFDM systems with the same bandwidth efficiency when a frequency offset exists. Moreover, since the redundant modulation provides the capability to suppress ICI as well as a receiving SNR gain, it can be considered as exchanging the bandwidth for SNR.