A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium...A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium(0) complex, followed by desilylation under mild conditions. This polymeric palladium catalyst can be reused many times without any decrease in activity.展开更多
以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到...以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到定常解的稳定条件,确定解的稳定性。在此基础上,分析了参激项、自激项以及分数阶微分项参数对系统幅频特性的影响。结果表明:改变参激项系数主要影响系统的响应幅值和共振频率范围;改变自激项系数主要影响系统响应幅值和多值性;改变分数阶微分项系数和阶次对系统的动力学行为具有双重调节的作用。展开更多
In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a...In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.展开更多
通过多尺度法对Duffing-van der Pol系统的幅频响应特性进行研究,多频激励改变了单频激励条件下系统的振动状态。与Duffing系统相比,Duffing-van der Pol系统不但使系统主共振曲线发生了偏移,而且系统的振幅也发生了变化。经过分析得出...通过多尺度法对Duffing-van der Pol系统的幅频响应特性进行研究,多频激励改变了单频激励条件下系统的振动状态。与Duffing系统相比,Duffing-van der Pol系统不但使系统主共振曲线发生了偏移,而且系统的振幅也发生了变化。经过分析得出了Duffing-van der Pol系统主共振幅频特性曲线的偏移和振幅的改变与加入的多频激励的幅度和频率有关。利用Matlab对Duffing-van der Pol进行了数值仿真,仿真结果得出多频外激励改变了原有单频激励的振动状态,并且随着多频激励的幅值和频率的改变,系统的振动状态出现了一定规律的变化。对比研究了解析分析与数值仿真结果,得出的结论比较一致。展开更多
研究了Duffing-van der Pol振子在一类时滞反馈控制下零解的稳定性问题以及极限环的振幅和稳定性问题。依平均法和对时滞反馈控制项泰劳展开的截断得到的平均方程表明,零解的稳定性除与原方程中线性项的系数有关外,只与线性反馈有关,与...研究了Duffing-van der Pol振子在一类时滞反馈控制下零解的稳定性问题以及极限环的振幅和稳定性问题。依平均法和对时滞反馈控制项泰劳展开的截断得到的平均方程表明,零解的稳定性除与原方程中线性项的系数有关外,只与线性反馈有关,与非线性反馈无关。通过调整线性反馈的增益和时滞,可以使不稳定的零解变得稳定。零解发生Hopf分岔导致的周期解的振幅除与原方程中非线性项的系数有关外,与线性反馈和非线性反馈均有关。通过调整反馈增益和时滞,不仅可以控制极限环的振幅,还可以抑制极限环的产生。此外,根据平均方程还容易发现反馈时滞对系统动力学行为的影响具有周期性。数值仿真的结果验证了理论分析的正确性。展开更多
利用运算放大器和乘法器进行电路设计,对早期利用电子管实现的Van der Pol振荡器利用现代集成电路加以实现。文中还利用OrCAD PSpice对设计的电路进行了模拟,得到了Van der Pol振荡器输出信号的波形图,并利用文本文件作为OrCAD PSpice和...利用运算放大器和乘法器进行电路设计,对早期利用电子管实现的Van der Pol振荡器利用现代集成电路加以实现。文中还利用OrCAD PSpice对设计的电路进行了模拟,得到了Van der Pol振荡器输出信号的波形图,并利用文本文件作为OrCAD PSpice和Matlab之间的接口,将OrCAD PSpice仿真得到的波形在Matlab中进行处理,得到Van der Pol振荡器两个状态变量的相图,并以此说明了Van der Pol振荡器所具有的丰富的非线性动力学特性。展开更多
为了研究宽带噪声激励下含分数阶导数的van der Pol-Duffing振子的首次穿越问题,首先应用广义谐波平衡技术,将分数阶导数表示的回复力分解为等效拟线性阻尼力和拟线性回复力,获得不含分数阶导数的等效非线性随机系统;然后,应用随机平均...为了研究宽带噪声激励下含分数阶导数的van der Pol-Duffing振子的首次穿越问题,首先应用广义谐波平衡技术,将分数阶导数表示的回复力分解为等效拟线性阻尼力和拟线性回复力,获得不含分数阶导数的等效非线性随机系统;然后,应用随机平均法将等效非线性随机系统近似为一维扩散过程,再建立和求解相应的后向Kolmogorov方程,获得系统的条件可靠性函数和平均首次穿越时间计算式;最后,通过实验结果表明,所提方法与蒙特卡罗法模拟结果吻合得非常好;系统的可靠性随分数阶数的增加而提高;分数阶导数表示的回复力不能简单地当作一类特殊的阻尼力.展开更多
基金the National Natural Science Foundation of China (No.20462002)Natural Science Foundation of Jiangxi Province (No.0420015)for financial support.
文摘A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium(0) complex, followed by desilylation under mild conditions. This polymeric palladium catalyst can be reused many times without any decrease in activity.
文摘以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到定常解的稳定条件,确定解的稳定性。在此基础上,分析了参激项、自激项以及分数阶微分项参数对系统幅频特性的影响。结果表明:改变参激项系数主要影响系统的响应幅值和共振频率范围;改变自激项系数主要影响系统响应幅值和多值性;改变分数阶微分项系数和阶次对系统的动力学行为具有双重调节的作用。
文摘In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.
文摘随着信息化的发展,企业网络架构也在不断变革。面对流量和用户快速增长等多重挑战,企业传统交换机的网络架构已经无法满足需求,因此需要引入全新的全光网络组网方式。通过对比分析无源光局域网(Passive Optical LAN,POL)与局域网(Local Area Network,LAN)的网络架构,阐述POL全光网络的优势与园区场景中2种组网方式的对比,探讨多场景下的全光网络解决方案,为POL全光网络相关领域的发展提供参考。
文摘通过多尺度法对Duffing-van der Pol系统的幅频响应特性进行研究,多频激励改变了单频激励条件下系统的振动状态。与Duffing系统相比,Duffing-van der Pol系统不但使系统主共振曲线发生了偏移,而且系统的振幅也发生了变化。经过分析得出了Duffing-van der Pol系统主共振幅频特性曲线的偏移和振幅的改变与加入的多频激励的幅度和频率有关。利用Matlab对Duffing-van der Pol进行了数值仿真,仿真结果得出多频外激励改变了原有单频激励的振动状态,并且随着多频激励的幅值和频率的改变,系统的振动状态出现了一定规律的变化。对比研究了解析分析与数值仿真结果,得出的结论比较一致。
文摘研究了Duffing-van der Pol振子在一类时滞反馈控制下零解的稳定性问题以及极限环的振幅和稳定性问题。依平均法和对时滞反馈控制项泰劳展开的截断得到的平均方程表明,零解的稳定性除与原方程中线性项的系数有关外,只与线性反馈有关,与非线性反馈无关。通过调整线性反馈的增益和时滞,可以使不稳定的零解变得稳定。零解发生Hopf分岔导致的周期解的振幅除与原方程中非线性项的系数有关外,与线性反馈和非线性反馈均有关。通过调整反馈增益和时滞,不仅可以控制极限环的振幅,还可以抑制极限环的产生。此外,根据平均方程还容易发现反馈时滞对系统动力学行为的影响具有周期性。数值仿真的结果验证了理论分析的正确性。
文摘利用运算放大器和乘法器进行电路设计,对早期利用电子管实现的Van der Pol振荡器利用现代集成电路加以实现。文中还利用OrCAD PSpice对设计的电路进行了模拟,得到了Van der Pol振荡器输出信号的波形图,并利用文本文件作为OrCAD PSpice和Matlab之间的接口,将OrCAD PSpice仿真得到的波形在Matlab中进行处理,得到Van der Pol振荡器两个状态变量的相图,并以此说明了Van der Pol振荡器所具有的丰富的非线性动力学特性。
文摘为了研究宽带噪声激励下含分数阶导数的van der Pol-Duffing振子的首次穿越问题,首先应用广义谐波平衡技术,将分数阶导数表示的回复力分解为等效拟线性阻尼力和拟线性回复力,获得不含分数阶导数的等效非线性随机系统;然后,应用随机平均法将等效非线性随机系统近似为一维扩散过程,再建立和求解相应的后向Kolmogorov方程,获得系统的条件可靠性函数和平均首次穿越时间计算式;最后,通过实验结果表明,所提方法与蒙特卡罗法模拟结果吻合得非常好;系统的可靠性随分数阶数的增加而提高;分数阶导数表示的回复力不能简单地当作一类特殊的阻尼力.