The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inv...The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.展开更多
The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of ...The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of the MBs are derived from the Timoshenko-beam theory in consideration of shear deformation. The electrical admittance is described directly in terms of the physical properties of the surface epoxy resin (SU-8) MBs from an electrically forced vibration analysis. It is found that both the inertia effect and the constraint effect of the MBs produce competitive influence on the resonant frequency and admittance of the compound QCR system. By further comparing the numerical results calculated from the Timoshenko-beam model with those from the Euler-beam model, the shear deformation is found to lead to some deviation of an admittance spectrum. The deviations are revealed to be evident around the admittance peak(s) and reach the maximum when a natural frequency of the MBs is identical to the fundamental frequency of the QCR. Besides, a higher order vibration mode of the MBs corresponds to a larger deviation at the resonance.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51425006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(No.zj1213)
文摘The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51435006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)
文摘The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of the MBs are derived from the Timoshenko-beam theory in consideration of shear deformation. The electrical admittance is described directly in terms of the physical properties of the surface epoxy resin (SU-8) MBs from an electrically forced vibration analysis. It is found that both the inertia effect and the constraint effect of the MBs produce competitive influence on the resonant frequency and admittance of the compound QCR system. By further comparing the numerical results calculated from the Timoshenko-beam model with those from the Euler-beam model, the shear deformation is found to lead to some deviation of an admittance spectrum. The deviations are revealed to be evident around the admittance peak(s) and reach the maximum when a natural frequency of the MBs is identical to the fundamental frequency of the QCR. Besides, a higher order vibration mode of the MBs corresponds to a larger deviation at the resonance.