针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与...针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。展开更多
Accurate localization is paramount for unmanned aerial vehicles (UAVs) spanning various technical and industrial domains, necessitating a comprehensive assessment of global navigation satellite system (GNSS) precision...Accurate localization is paramount for unmanned aerial vehicles (UAVs) spanning various technical and industrial domains, necessitating a comprehensive assessment of global navigation satellite system (GNSS) precision. This study investigates the performance of distinct GNSS constellations in determining the precise location of a building utilizing a high-precision GNSS receiver. The receiver, incorporating advanced multi-frequency and full-constellation positioning capabilities, was integrated with a smartphone via Bluetooth to enable the UAV’s acquisition of centimeter-level positioning data. Sequential utilization of single satellite systems—such as GPS-only, GLONASS-only, Galileo-only, SBAS-only, and BeiDou-only—facilitated the documentation of latitude and longitude coordinates for the designated building. Subsequent comparison of these coordinates with a specialized Geographic Information System (GIS) was conducted to evaluate their positional accuracy. The comparative analysis underscores significant variability in the precision offered by each satellite constellation, providing valuable insights for optimizing UAV navigation across GIS, IoT, construction, and other sectors requiring high-precision localization. This research underscores the significance of high-precision GNSS receivers in enhancing UAV-based geospatial assessments, emphasizing the critical selection of appropriate satellite systems for tailored localization tasks. The study contributes to advancing UAV navigation strategies, ensuring robust and accurate geospatial data collection within diverse operational frameworks.展开更多
文摘Accurate localization is paramount for unmanned aerial vehicles (UAVs) spanning various technical and industrial domains, necessitating a comprehensive assessment of global navigation satellite system (GNSS) precision. This study investigates the performance of distinct GNSS constellations in determining the precise location of a building utilizing a high-precision GNSS receiver. The receiver, incorporating advanced multi-frequency and full-constellation positioning capabilities, was integrated with a smartphone via Bluetooth to enable the UAV’s acquisition of centimeter-level positioning data. Sequential utilization of single satellite systems—such as GPS-only, GLONASS-only, Galileo-only, SBAS-only, and BeiDou-only—facilitated the documentation of latitude and longitude coordinates for the designated building. Subsequent comparison of these coordinates with a specialized Geographic Information System (GIS) was conducted to evaluate their positional accuracy. The comparative analysis underscores significant variability in the precision offered by each satellite constellation, providing valuable insights for optimizing UAV navigation across GIS, IoT, construction, and other sectors requiring high-precision localization. This research underscores the significance of high-precision GNSS receivers in enhancing UAV-based geospatial assessments, emphasizing the critical selection of appropriate satellite systems for tailored localization tasks. The study contributes to advancing UAV navigation strategies, ensuring robust and accurate geospatial data collection within diverse operational frameworks.