An investigation was carried out of the morphology and microstructure of V-Ti complex carbonitride in steel 09MnVTiN during reheating under analytical electron microscope.The prior V-rich ellipsoid V-Ti complex carbon...An investigation was carried out of the morphology and microstructure of V-Ti complex carbonitride in steel 09MnVTiN during reheating under analytical electron microscope.The prior V-rich ellipsoid V-Ti complex carbonitride particles are replaced progressively by Ti-rich cubic ones as the reheating temperature elevated from 1050 to 1400℃.The Ti con- tents in the core and border of particles increase from 15 and 6% in hot-rolled specimens into 84 and94% at 1400℃ respectively.展开更多
The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainit...The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainitic steel based on the mass loss measurements. The morphology and composition of the rusting products have been investigated in order to realize the mechanism of rust formation on the two steels. The rust scale on both steels was composed of a dense inner layer and a loose outer layer. The inner layer grew thicker and denser as the test proceeding. Both of inner and outer layers were mainly composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3) with a small amount of lepidocrocite (γ-FeOOH) and akaganeite (β-FeOOH). The rust phase of γ-Fe2O3 was detected in a higher amount of the inner layer, resulting in a much denser inner layer. The inner rust layer of 09CuPCrNi being denser and thicker than that of the high strength bainitic steel was attributed to the alloying elements such as copper, chromium and phosphorus enriched in it. The protective inner rust layer plays an important role in the corrosion resistance of the steel.展开更多
文摘An investigation was carried out of the morphology and microstructure of V-Ti complex carbonitride in steel 09MnVTiN during reheating under analytical electron microscope.The prior V-rich ellipsoid V-Ti complex carbonitride particles are replaced progressively by Ti-rich cubic ones as the reheating temperature elevated from 1050 to 1400℃.The Ti con- tents in the core and border of particles increase from 15 and 6% in hot-rolled specimens into 84 and94% at 1400℃ respectively.
文摘The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainitic steel based on the mass loss measurements. The morphology and composition of the rusting products have been investigated in order to realize the mechanism of rust formation on the two steels. The rust scale on both steels was composed of a dense inner layer and a loose outer layer. The inner layer grew thicker and denser as the test proceeding. Both of inner and outer layers were mainly composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3) with a small amount of lepidocrocite (γ-FeOOH) and akaganeite (β-FeOOH). The rust phase of γ-Fe2O3 was detected in a higher amount of the inner layer, resulting in a much denser inner layer. The inner rust layer of 09CuPCrNi being denser and thicker than that of the high strength bainitic steel was attributed to the alloying elements such as copper, chromium and phosphorus enriched in it. The protective inner rust layer plays an important role in the corrosion resistance of the steel.