Epidermal growth factor (EGF) may increase cell motility, an event implicated in cancer cell invasion and metastasis. However, the underlying mechanisms for EGF-induced cell motility remain elusive. In this study, w...Epidermal growth factor (EGF) may increase cell motility, an event implicated in cancer cell invasion and metastasis. However, the underlying mechanisms for EGF-induced cell motility remain elusive. In this study, we found that EGF treatment could activate Ras-related C3 botulinum toxin substrate 1 (Racl), PI3K/Akt and p21- actived kinase (PAK1) along with cell migration. Ectopic expression of PAK1 K299R, a dominant negative PAK1 mutant, could largely abolish EGF-induced cell migration. Blocking PI3K/Akt signalling with LY294002 or Akt siRNA remarkably inhibited both EGF-induced PAK1 activation and cell migration. Furthermore, expression of dominant-negative Racl (T17N) could largely block EGF-induced PI3K/Akt-PAK1 activation and cell migration. Interestingly, EGF could induce a significant production of ROS, and N-acetyl-L-cysteine, a scavenger of ROS which abolished the EGF-induced ROS generation, cell migration, as well as activation of PI3K/Akt and PAK, but not Racl. Our study demonstrated that EGF-induced cell migration involves a cascade of signalling events, including activation of Racl, generation of ROS and subsequent activation of PI3K/Akt and PAK1.展开更多
Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis m...Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis,Radix et Rhizoma Ginseng,Radix Scutellariae and Concha Ostreae.According to traditional Chinese medicine theory,Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs;Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs.A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke,but its mechanism of action is unknown.Axonal remodeling is an important mechanism in neural protection and regeneration.Therefore,this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia.Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery.At 6 hours after model establishment,rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug.These medicines were intragastrically administered as above every 24 hours for 7 consecutive days.Houshiheisan,and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia.Furthermore,Houshiheisan,and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling:amyloid precursor protein,neurite outgrowth inhibitor protein A(Nogo-A),Rho family small GTPase A(Rho A) and Rho-associated kinase 2(Rock2),and increased the expression of growth associated protein-43,microtubule-associated protein-2,netrin-1,Ras-related C3 botulinum toxin substrate 1(Rac1) and cell division cycle 42(Cdc42).The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone.In conclusion,Houshiheisan,and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/Rho A/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways.These effects are strongest with Houshiheisan.展开更多
Metastasis is one of the main reasons causing death in cancer patients.It was reported that chemotherapy might induce metastasis.In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions ...Metastasis is one of the main reasons causing death in cancer patients.It was reported that chemotherapy might induce metastasis.In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis,the relationship between epithelial-mesenchymal transition(EMT)and doxorubicin(DOX)treatment was investigated and a redox-sensitive small interfering RNA(siRNA)delivery system was designed.DOX-related reactive oxygen species(ROS)were found to be responsible for the invasiveness of tumor cells in vitro,causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1(RAC1).In order to decrease RAC1,a redox-sensitive glycolipid drug delivery system(chitosan-ss-stearylamine conjugate(CSO-ss-SA))was designed to carry siRNA,forming a gene delivery system(CSO-ss-SA/siRNA)downregulating RAC1.CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione(GSH)and showed a significant safety.CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells,reducing the expression of RAC1 protein by 38.2%and decreasing the number of tumor-induced invasion cells by 42.5%.When combined with DOX,CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency.The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.展开更多
基金supported by grants from the National Natural Science Foundation of China (No. 30872926)the Program for AdvancedTalents within Six Industries of Jiangsu Province (08-D) to Dr. Luo Gu+1 种基金the Science Development Foundation of Nanjing Medical University (No. 2010NJMUZ35)the Research Program funded by Schoolof Basic Medical Science, Nanjing Medical University to Dr. Jun Du
文摘Epidermal growth factor (EGF) may increase cell motility, an event implicated in cancer cell invasion and metastasis. However, the underlying mechanisms for EGF-induced cell motility remain elusive. In this study, we found that EGF treatment could activate Ras-related C3 botulinum toxin substrate 1 (Racl), PI3K/Akt and p21- actived kinase (PAK1) along with cell migration. Ectopic expression of PAK1 K299R, a dominant negative PAK1 mutant, could largely abolish EGF-induced cell migration. Blocking PI3K/Akt signalling with LY294002 or Akt siRNA remarkably inhibited both EGF-induced PAK1 activation and cell migration. Furthermore, expression of dominant-negative Racl (T17N) could largely block EGF-induced PI3K/Akt-PAK1 activation and cell migration. Interestingly, EGF could induce a significant production of ROS, and N-acetyl-L-cysteine, a scavenger of ROS which abolished the EGF-induced ROS generation, cell migration, as well as activation of PI3K/Akt and PAK, but not Racl. Our study demonstrated that EGF-induced cell migration involves a cascade of signalling events, including activation of Racl, generation of ROS and subsequent activation of PI3K/Akt and PAK1.
基金supported by the National Natural Science Foundation of China,No.81373526
文摘Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis,Radix et Rhizoma Ginseng,Radix Scutellariae and Concha Ostreae.According to traditional Chinese medicine theory,Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs;Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs.A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke,but its mechanism of action is unknown.Axonal remodeling is an important mechanism in neural protection and regeneration.Therefore,this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia.Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery.At 6 hours after model establishment,rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug.These medicines were intragastrically administered as above every 24 hours for 7 consecutive days.Houshiheisan,and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia.Furthermore,Houshiheisan,and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling:amyloid precursor protein,neurite outgrowth inhibitor protein A(Nogo-A),Rho family small GTPase A(Rho A) and Rho-associated kinase 2(Rock2),and increased the expression of growth associated protein-43,microtubule-associated protein-2,netrin-1,Ras-related C3 botulinum toxin substrate 1(Rac1) and cell division cycle 42(Cdc42).The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone.In conclusion,Houshiheisan,and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/Rho A/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways.These effects are strongest with Houshiheisan.
基金Project supported by the National Natural Science Foundation of China(No.81773648)the Zhejiang Provincial Natural Science Foundation of China(No.D19H30001)the Chinese Postdoc Funding(No.2018M630686).
文摘Metastasis is one of the main reasons causing death in cancer patients.It was reported that chemotherapy might induce metastasis.In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis,the relationship between epithelial-mesenchymal transition(EMT)and doxorubicin(DOX)treatment was investigated and a redox-sensitive small interfering RNA(siRNA)delivery system was designed.DOX-related reactive oxygen species(ROS)were found to be responsible for the invasiveness of tumor cells in vitro,causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1(RAC1).In order to decrease RAC1,a redox-sensitive glycolipid drug delivery system(chitosan-ss-stearylamine conjugate(CSO-ss-SA))was designed to carry siRNA,forming a gene delivery system(CSO-ss-SA/siRNA)downregulating RAC1.CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione(GSH)and showed a significant safety.CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells,reducing the expression of RAC1 protein by 38.2%and decreasing the number of tumor-induced invasion cells by 42.5%.When combined with DOX,CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency.The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.