期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于SDG15.3.1的土地利用变化对生态系统服务价值的影响
1
作者 张龙江 赵俊三 +3 位作者 陈国平 林伊琳 刘俸汝 彭苏芬 《水土保持学报》 CSCD 北大核心 2024年第2期268-277,共10页
[目的]可持续发展目标15.3.1是表征土地退化的重要指标之一,探析土地利用变化和生态系统服务价值(ESV)对可持续发展目标15.3.1的影响是改进土地退化的关键因素。基于土地利用及碳储量变化对SDG15.3.1指标制定新的评价规则,并对SDG15.3.... [目的]可持续发展目标15.3.1是表征土地退化的重要指标之一,探析土地利用变化和生态系统服务价值(ESV)对可持续发展目标15.3.1的影响是改进土地退化的关键因素。基于土地利用及碳储量变化对SDG15.3.1指标制定新的评价规则,并对SDG15.3.1完成情况进行评估。[方法]采用等效因子法计算生态系统服务价值,以定量分析土地利用变化对ESV的影响。[结果](1)研究区土地利用类型转换频繁,主要表现为高林地、水体和建设用地增加,耕地、草地和灌木林减少,未利用地基本保持不变。(2)ESV在空间上呈中间高、四周低,西部高、东部低的分布格局;2000-2020年总ESV损失7.32×10^(8)元。其中,2000-2010年,土地退化区域的ESV损失3.03×10^(9)元;2010-2020年,土地退化区域的ESV损失2.28×10^(9)元。(3)根据SDG15.3.1评估结果显示,2000-2010年和2010-2020年SDG15.3.1指标分别为5.22%和4.77%,而土地净恢复面积分别为-1.62×10^(5) hm 2和-2.4×10^(5) hm 2。SDG15.3.1指标的完成情况有所提高,但仍未实现土地退化零增长目标。[结论]研究结果为高原城市群在实现可持续发展目标15.3.1过程中土地利用变化对生态系统服务价值的影响提供参考。 展开更多
关键词 生态系统服务价值 可持续发展目标15.3.1 碳储量 土地利用变化 滇中城市群
下载PDF
面向联合国SDG15.3.1的2000~2020年京津冀地区土地退化评估 被引量:1
2
作者 陈宇佳 张俊 +3 位作者 张平 王陈哲 况玮婕 陈炯宾 《时空信息学报》 2023年第4期560-573,共14页
为了防止土地退化,《联合国防治荒漠化公约》提出了土地退化零增长的目标,并成为可持续发展目标(sustainable development goal,SDG)的重要目标之一。但就目前SDG评估而言,针对长时序演变特征的土地退化中性(land degradation neutralit... 为了防止土地退化,《联合国防治荒漠化公约》提出了土地退化零增长的目标,并成为可持续发展目标(sustainable development goal,SDG)的重要目标之一。但就目前SDG评估而言,针对长时序演变特征的土地退化中性(land degradation neutrality,LDN)本土化实证研究还较少。因此,本文利用SDG15.3.1元数据指标框架,以2000~2010年为基准期,2010~2020年为评估期,对近20年京津冀地区的土地退化情况进行了评估。结果表明:①基准期,京津冀土地退化的面积为18004 km^(2)(占全区域总面积的比例为8.41%),土地改善的面积64900 km^(2)(占全区域总面积的比例为30.32%),基准期综合表现为改善;②评估期,京津冀土地退化的面积为27414 km^(2)(占全区域总面积的比例为12.8%),土地改善的面积42957 km^(2)(占全区域总面积的比例为20.06%),评估期综合表现为改善;③土地生产力的变化在基准期和评估期对土地状态的评估起了主导作用,其次为土地覆盖,土壤有机碳变化的作用最小;④通过基准期和评估期土地退化的情况相比,得出京津冀地区2000~2020年达到了土地退化零增长的目标。研究结果将有助于京津冀地区生态规划管理,推动京津冀协同发展。 展开更多
关键词 土地退化空间型监测 SDG15.3.1 京津冀 土地覆盖 土地生产力 土壤有机碳
下载PDF
Beyond the SDG 15.3.1 Good Practice Guidance 1.0 using the Google Earth Engine platform: developing a self-adjusting algorithm to detect significant changes in water use efficiency and net primary production 被引量:3
3
作者 Andrea Markos Neil Sims Gregory Giuliani 《Big Earth Data》 EI CSCD 2023年第1期59-80,共22页
Monitoring changes in Annual Net Primary Productivity(ANPP)is required for reporting on UN Sustainable Development Goal(SDG)Indicator 15.3.1:the proportion of land that is degraded over the total land area.Calibrating... Monitoring changes in Annual Net Primary Productivity(ANPP)is required for reporting on UN Sustainable Development Goal(SDG)Indicator 15.3.1:the proportion of land that is degraded over the total land area.Calibrating time-series observations of ANPP to derive Water Use Efficiency(WUE;a measure of ANPP per unit of evapotranspiration)can minimize the influence of climate factors on ANPP observations and highlight the influence of non-climatic drivers of degradation such as land use changes.Comparing the ANPP and WUE time series may be useful for identifying the primary drivers of land degradation,which could be used to support the Land Degradation Neutrality objectives of the UN Convention to Combat Desertification(UNCCD).This paper presents an algorithm for the Google Earth Engine(freely and openly available upon request-http://doi.org/10.5281/zenodo.4429773)to calculate and compare ANPP and WUE time series for Santa Cruz,Bolivia,which has recently experienced an intensification in its land use.This code builds on the Good Practice Guidance document(ver-sion 1)for monitoring SDG Indicator 15.3.1.We use the MODIS 16-day average,250 m resolution to demonstrate that the Enhanced Vegetation Index(EVI)responds faster to changes in water avail-ability than the Normalized Difference Vegetation Index(NDVI).We also consider the relationships between ANPP and WUE.Significant and concordant trends may highlight good agricultural practices or increased resilience in ecosystem structure and productivity when they are positive or reducing resilience and functional integrity if negative.The sign and significance of the correlation between ANPP and WUE may also diverge over time.With further analysis,it may be possible to interpret this relationship in terms of the drivers of change in plant productivity and ecosystem resilience. 展开更多
关键词 Land degradation land productivity water use efficiency Google Earth Engine MODIS Good Practice Guidance SDG 15.3.1
原文传递
HiLPD-GEE:high spatial resolution land productivity dynamicscal culation tool using Landsat and MODIS data
4
作者 Tong Shen Xiaosong Li +4 位作者 Yang Chen Yuran Cui Qi Lu Xiaoxia Jia Jin Chen 《International Journal of Digital Earth》 SCIE EI 2023年第1期671-690,共20页
Land productivity is one of the sub-indicators for measuring SDG 15.3.1.Land Productivity Dynamics(LPD)is the most popular approach for reporting this indicator at the global scale.A major limitation of existing produ... Land productivity is one of the sub-indicators for measuring SDG 15.3.1.Land Productivity Dynamics(LPD)is the most popular approach for reporting this indicator at the global scale.A major limitation of existing products of LPD is the coarse spatial resolution caused by remote sensing data input,which cannot meet the requirement offine-scale land degradation assessment.To resolve this problem,this study developed a tool(HiLPD-GEE)to calculate 30 m LPD by fusing Landsat and MODIS data based on Google Earth Engine(GEE).The tool generates high-quality fused Normalized Difference Vegetation Index(NDVI)dataset for LPD calculation through gapfilling and Savitzky–Golayfiltering(GF-SG)and then uses the method recommended by the European Commission Joint Research Centre(JRC)to calculate LPD.The tool can calculate 30 m LPD in any spatial range within any time window after 2013,supporting global land degradation monitoring.To demonstrate the applicability of this tool,the LPD product was produced for African Great Green Wall(GGW)countries.The analysis proves that the 30 m LPD product generated by HiLPD-GEE could reflect the land productivity change effectively and reflect more spatial details.The results also provide an important insight for the GGW initiative. 展开更多
关键词 SDG 15.3.1 land productivity dynamics GF-SG Great Green Wall Google Earth Engine
原文传递
Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15-exploring the potential of data cube 被引量:8
5
作者 Gregory Giuliani Bruno Chatenoux +3 位作者 Antonio Benvenuti Pierre Lacroix Mattia Santoro Paolo Mazzetti 《Big Earth Data》 EI 2020年第1期3-22,共20页
Avoiding,reducing,and reversing land degradation and restoring degraded land is an urgent priority to protect the biodiversity and ecosystem services that are vital to life on Earth.To halt and reverse the current tre... Avoiding,reducing,and reversing land degradation and restoring degraded land is an urgent priority to protect the biodiversity and ecosystem services that are vital to life on Earth.To halt and reverse the current trends in land degradation,there is an immediate need to enhance national capacities to undertake quantitative assessments and mapping of their degraded lands,as required by the Sustainable Development Goals(SDGs),in particular,the SDG indicator 15.3.1(“proportion of land that is degraded over total land area”).Earth Observations(EO)can play an important role both for generating this indicator as well as complementing or enhancing national official data sources.Implementations like Trends.Earth to monitor land degradation in accordance with the SDG15.3.1 rely on default datasets of coarse spatial resolution provided by MODIS or AVHRR.Consequently,there is a need to develop methodologies to benefit from medium to high-resolution satellite EO data(e.g.Landsat or Sentinels).In response to this issue,this paper presents an initial overview of an innovative approach to monitor land degradation at the national scale in compliance with the SDG15.3.1 indicator using Landsat observations using a data cube but further work is required to improve the calculation of the three sub-indicators. 展开更多
关键词 Land degradation Sustainable Development Goals Open Data Cube LANDSAT Sentinel-2 SDG15.3.1
原文传递
A new global land productivity dynamic product based on the consistency of various vegetation biophysical indicators 被引量:3
6
作者 Yuran Cui Xiaosong Li 《Big Earth Data》 EI 2022年第1期36-53,共18页
Changes in land productivity have been endorsed by the Inter Agency Expert Group on Sustainable Development Goals(IAEGSDGs)as key indicators for monitoring SDG 15.3.1.Multiple vegeta-tion parameters from optical remot... Changes in land productivity have been endorsed by the Inter Agency Expert Group on Sustainable Development Goals(IAEGSDGs)as key indicators for monitoring SDG 15.3.1.Multiple vegeta-tion parameters from optical remote sensing techniques have been widely utilized across different land productivity decline processes and scales.However,there is no consensus on indicator selection and their effectiveness at representing land productivity declining at different scales.This study proposes a fusion framework that incorporates the trends and consistencies within the four com-monly used remote sensing-based vegetation indicators.We ana-lyzed the differences among the four vegetation parameters in different land cover and climate zones,finally producing a new global land productivity dynamics(LPD)product with confidence level degrees.The LPD classes indicated by the four vegetation indicators(VIs)showed that all three levels(low,medium,and high confidence)of increasing area account for 23.99%of the global vegetated area and declining area account for 7.00%.The Increase high-confidence(HC)area accounted for 2.77%of the total area,and the Decline-HC accounted for 0.35%of the total area.This study demonstrates the accuracy of the high-confidence(HC)area for the evaluation of land productivity decline and increase.The“forest”landcover type and“humid”climate zone had the largest increasing and declining area but had the lowest high-confidence proportion.The data product provides an important and optional reference for the assessment of SDG 15.3.1 at global and regional scales according to the specific application target. 展开更多
关键词 Sustainable development goals SDG 15.3.1 vegetation parameters confidence level google Earth engine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部