Eight new brominated 2'(4')-nitro-3-hydroxy diphenyl ethers have been designed and synthesized. The structures of new compounds were confirmed by ^1H NMR, IR and HRMS. The bioactivity tests showed that these compo...Eight new brominated 2'(4')-nitro-3-hydroxy diphenyl ethers have been designed and synthesized. The structures of new compounds were confirmed by ^1H NMR, IR and HRMS. The bioactivity tests showed that these compounds possessed antibacterial activities against the tested bacteria. These new compounds cannot be transformed into dioxins when they were manufactured and used.展开更多
Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality a...Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality assessment, since RK structurally resembles 4-(4-hydroxyphenyl)-2-butanol, which causes leukoderma on consumers’ skin. Here, we present a simple HPLC-fluorescence method for determination of RK in a fragrance mist by pre-column derivatization with 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine (NBD-H), which reacts with the carbonyl group of RK. The NBD-RK derivative was eluted from a reversed-phase ODS column, and detected with excitation at 470 nm and emission at 550 nm. The retention time of NBD-RK derivative obtained by reaction with NBD-H at 80°C for 20 min was 10.3 min. The standard curve was linear in the range of 0.2 to 10 μg/mL, with a correlation coefficient (r<sup>2</sup>) value of 0.9980. The lower limit of detection was 0.018 μg/mL (absolute amount of 1.8 pmol). The coefficients of variation were less than 8.1%. The content of RK in fragrance mist (1.00 mL) was 1.18 ± 0.07 mg (range: 1.12 to 1.28 mg, n = 5). Recovery tests were satisfactory (83.9% ± 3.9%;range: 79.6 to 88.8%, n = 5).展开更多
This paper introduces the synthesis of a new color reagent 1-(6-nitro-2-benzothiazolyl)3-(4-nitrophenyl)-triazene (NBTNPT) and the color reaction of NBTNPT with Cd (II) has been studied. In the presence of Triton X-10...This paper introduces the synthesis of a new color reagent 1-(6-nitro-2-benzothiazolyl)3-(4-nitrophenyl)-triazene (NBTNPT) and the color reaction of NBTNPT with Cd (II) has been studied. In the presence of Triton X-100, the reagent with Cd (II) forms an orange-yellow complex (1:1) at pH=11.5-12.3, the molar absorptivity is 2.81x10(5)L . mol(-1)m(-1) by dual-wavelength spectrophotometry, Beers law is obeyed in the range of 0-280 mu g/L for Cd (II).展开更多
The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chloroben...The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chlorobenzenesulfinic acid to form the target product, 2-nitro-4-(β- hydroxyethylsulfonyl)chlorobenzene, there presented three kinds of side reactions: 1. Condensation and elimination of HCI to form biphenyl sulfone derivatives; 2. Addition to give bisulfonyl ethane derivative via vinyl sulfone; and 3. Hydroxylethylation on O-atom to produce hydroxylethylsulfinate due to the tautomerism of sulfinic acid.展开更多
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
The thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex and its kinetics were studied under the non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis...The thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex and its kinetics were studied under the non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by the Kissinger method,the Ozawa method,the differential method and the integral method. The most probable mechanism functions for the thermal decomposition of the first stage,the second stage and the third stage were suggested by comparing the kinetic parameters. The entropy of activation (ΔS ≠),enthalpy of activation (ΔH ≠) and free energy of activation (ΔG ≠) at Tpdo are -66.74 J·mol -1 ·K -1 ,119.2 kJ·mol -1 and 152.44 kJ·mol -1 ,respectively.展开更多
To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability,twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~L)are...To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability,twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~L)are designed and analyzed by using density functional theory(DFT)calculations at the B3LYP/6-311G**level of theory.The molecular heats of formation(HOF),electronic structures,impact sensitivity(H_(50)),oxygen balance(OB)and density(ρ)are investigated by isodesmic reaction method and physicochemical formulas.Furthermore,the detonation velocity(D)and detonation pressure(P)are calculated to study the detonation performance by Kamlet-Jacobs(K-J)equation.These results show that new molecule J(H_(50)=36.9 cm,ρ=1.90g/cm^(3),Q=1912.46 cal/g,P=37.82 GPa,D=9.22 km/s,OB=0.00),compound A(H_(50)=27.9 cm,ρ=1.93 g/cm^(3),Q=1612.93 cal/g,P=38.90 GPa,D=9.19 km/s)and compound H(H_(50)=37.3 cm,ρ=1.97 g/cm^(3),Q=1505.06cal/g,P=37.20 GPa,D=9.01 km/s)present promising effects that are far better RDX and HMX as the high energy density materials.Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.展开更多
The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~J)are explored employing density functional theory(DFT)calculations at the B3LYP/6-...The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~J)are explored employing density functional theory(DFT)calculations at the B3LYP/6-311G^(**)level of theory.Based on the optimized molecular structures,the heats of formation(HOF)are obtained,and the electronic properties,density and molecular sensitivity by characteristic heights(H_(50))are discussed.Besides,the detonation performances(detonation velocity,detonation pressure)are estimated via Kamlet-Jacobs(K-J)formula.Compounds B(H50=29.4 cm,ρ=1.91 g/cm^(3),Q=1563.04 cal/g,P=36.05 GPa,D=8.95 km/s)and H(H_(50)=31.9 cm,ρ=1.80 g/cm^(3),Q=1610.09 cal/g,P=37.31 GPa,D=9.12 km/s)have positive HOFs and remarkable insensitivity and good detonation performance,strongly suggesting them as the acceptable new-type explosive.The initiating power surpasses conventional primary explosives,such as HMX.The outstanding detonation power of compounds B and H contributes to its future prospects as a promising green primary explosive.展开更多
As an emerging high-energy compound,3-nitro-1,2,4-triazol-5-one(NTO)is used in military explosives and rocket propellants.However,the strong acidic corrosion of NTO,and the high sensitivity and poor thermostability of...As an emerging high-energy compound,3-nitro-1,2,4-triazol-5-one(NTO)is used in military explosives and rocket propellants.However,the strong acidic corrosion of NTO,and the high sensitivity and poor thermostability of its salts,severely restrict their practical applications.Therefore,a novel strategy to design and construct energetic covalent organic frameworks(COFs)is proposed in this study.We have successfully prepared a two-dimensional crystalline energetic COF(named ECOF-1)assembled from triaminoguanidine salt,in which NTO anions are trapped in the porous framework via the ionic interaction and hydrogen bonds.The results show that ECOF-1 exhibits superior thermal stability than energetic salt of NTO.It also exhibits insensitivity and excellent heat of detonation of 7,971.71 kJ·kg−1.ECOF-1 greatly inhibits the corrosiveness of NTO.In prospect,energetic COFs are promising as a functional platform to design high-energy and insensitive energetic materials.展开更多
文摘Eight new brominated 2'(4')-nitro-3-hydroxy diphenyl ethers have been designed and synthesized. The structures of new compounds were confirmed by ^1H NMR, IR and HRMS. The bioactivity tests showed that these compounds possessed antibacterial activities against the tested bacteria. These new compounds cannot be transformed into dioxins when they were manufactured and used.
文摘Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality assessment, since RK structurally resembles 4-(4-hydroxyphenyl)-2-butanol, which causes leukoderma on consumers’ skin. Here, we present a simple HPLC-fluorescence method for determination of RK in a fragrance mist by pre-column derivatization with 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine (NBD-H), which reacts with the carbonyl group of RK. The NBD-RK derivative was eluted from a reversed-phase ODS column, and detected with excitation at 470 nm and emission at 550 nm. The retention time of NBD-RK derivative obtained by reaction with NBD-H at 80°C for 20 min was 10.3 min. The standard curve was linear in the range of 0.2 to 10 μg/mL, with a correlation coefficient (r<sup>2</sup>) value of 0.9980. The lower limit of detection was 0.018 μg/mL (absolute amount of 1.8 pmol). The coefficients of variation were less than 8.1%. The content of RK in fragrance mist (1.00 mL) was 1.18 ± 0.07 mg (range: 1.12 to 1.28 mg, n = 5). Recovery tests were satisfactory (83.9% ± 3.9%;range: 79.6 to 88.8%, n = 5).
文摘This paper introduces the synthesis of a new color reagent 1-(6-nitro-2-benzothiazolyl)3-(4-nitrophenyl)-triazene (NBTNPT) and the color reaction of NBTNPT with Cd (II) has been studied. In the presence of Triton X-100, the reagent with Cd (II) forms an orange-yellow complex (1:1) at pH=11.5-12.3, the molar absorptivity is 2.81x10(5)L . mol(-1)m(-1) by dual-wavelength spectrophotometry, Beers law is obeyed in the range of 0-280 mu g/L for Cd (II).
文摘The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chlorobenzenesulfinic acid to form the target product, 2-nitro-4-(β- hydroxyethylsulfonyl)chlorobenzene, there presented three kinds of side reactions: 1. Condensation and elimination of HCI to form biphenyl sulfone derivatives; 2. Addition to give bisulfonyl ethane derivative via vinyl sulfone; and 3. Hydroxylethylation on O-atom to produce hydroxylethylsulfinate due to the tautomerism of sulfinic acid.
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 99710 2 5 )
文摘The thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex and its kinetics were studied under the non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by the Kissinger method,the Ozawa method,the differential method and the integral method. The most probable mechanism functions for the thermal decomposition of the first stage,the second stage and the third stage were suggested by comparing the kinetic parameters. The entropy of activation (ΔS ≠),enthalpy of activation (ΔH ≠) and free energy of activation (ΔG ≠) at Tpdo are -66.74 J·mol -1 ·K -1 ,119.2 kJ·mol -1 and 152.44 kJ·mol -1 ,respectively.
基金Supported by theof Tangshan Normal University(2021B37and 2021B32)the School Fund of Shanxi Institute of Technology(2019004)the Fund of Shanxi Provincial Education Department(2019L0986)。
文摘To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability,twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~L)are designed and analyzed by using density functional theory(DFT)calculations at the B3LYP/6-311G**level of theory.The molecular heats of formation(HOF),electronic structures,impact sensitivity(H_(50)),oxygen balance(OB)and density(ρ)are investigated by isodesmic reaction method and physicochemical formulas.Furthermore,the detonation velocity(D)and detonation pressure(P)are calculated to study the detonation performance by Kamlet-Jacobs(K-J)equation.These results show that new molecule J(H_(50)=36.9 cm,ρ=1.90g/cm^(3),Q=1912.46 cal/g,P=37.82 GPa,D=9.22 km/s,OB=0.00),compound A(H_(50)=27.9 cm,ρ=1.93 g/cm^(3),Q=1612.93 cal/g,P=38.90 GPa,D=9.19 km/s)and compound H(H_(50)=37.3 cm,ρ=1.97 g/cm^(3),Q=1505.06cal/g,P=37.20 GPa,D=9.01 km/s)present promising effects that are far better RDX and HMX as the high energy density materials.Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.
基金the of Tangshan Normal University(2021B37and 2021B32)the School Fund of Shanxi Institute of Technology(2019004)the Fund of Shanxi Provincial Education Department(2019L0986)。
文摘The geometric and electronic structures of the derivatives of 4-nitro-5-(5-nitroimino-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate(named A~J)are explored employing density functional theory(DFT)calculations at the B3LYP/6-311G^(**)level of theory.Based on the optimized molecular structures,the heats of formation(HOF)are obtained,and the electronic properties,density and molecular sensitivity by characteristic heights(H_(50))are discussed.Besides,the detonation performances(detonation velocity,detonation pressure)are estimated via Kamlet-Jacobs(K-J)formula.Compounds B(H50=29.4 cm,ρ=1.91 g/cm^(3),Q=1563.04 cal/g,P=36.05 GPa,D=8.95 km/s)and H(H_(50)=31.9 cm,ρ=1.80 g/cm^(3),Q=1610.09 cal/g,P=37.31 GPa,D=9.12 km/s)have positive HOFs and remarkable insensitivity and good detonation performance,strongly suggesting them as the acceptable new-type explosive.The initiating power surpasses conventional primary explosives,such as HMX.The outstanding detonation power of compounds B and H contributes to its future prospects as a promising green primary explosive.
基金This work was financially supported by the Key Project of National Defense Basic Research Program of China(No.2019-JCJQ-ZD-139-00)the Postdoctoral Science Foundation of China(No.2021M700418).
文摘As an emerging high-energy compound,3-nitro-1,2,4-triazol-5-one(NTO)is used in military explosives and rocket propellants.However,the strong acidic corrosion of NTO,and the high sensitivity and poor thermostability of its salts,severely restrict their practical applications.Therefore,a novel strategy to design and construct energetic covalent organic frameworks(COFs)is proposed in this study.We have successfully prepared a two-dimensional crystalline energetic COF(named ECOF-1)assembled from triaminoguanidine salt,in which NTO anions are trapped in the porous framework via the ionic interaction and hydrogen bonds.The results show that ECOF-1 exhibits superior thermal stability than energetic salt of NTO.It also exhibits insensitivity and excellent heat of detonation of 7,971.71 kJ·kg−1.ECOF-1 greatly inhibits the corrosiveness of NTO.In prospect,energetic COFs are promising as a functional platform to design high-energy and insensitive energetic materials.