In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle TM⊕∧<sup>p</sup>T*M for an m-dimensional smooth mani...In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle TM⊕∧<sup>p</sup>T*M for an m-dimensional smooth manifold M, and a Lie 2-algebra which is a “categorified” version of a Lie algebra. We prove that the higher-order Courant algebroids give rise to a semistrict Lie 2-algebra, and we prove that the higher-order Dorfman algebroids give rise to a hemistrict Lie 2-algebra. Consequently, there is an isomorphism from the higher-order Courant algebroids to the higher-order Dorfman algebroids as Lie 2-algebras homomorphism.展开更多
In this paper,we give the notion of derivations of Lie 2-algebras using explicit formulas,and construct the associated derivation Lie 3-algebra.We prove that isomorphism classes of non-abelian extensions of Lie 2-alge...In this paper,we give the notion of derivations of Lie 2-algebras using explicit formulas,and construct the associated derivation Lie 3-algebra.We prove that isomorphism classes of non-abelian extensions of Lie 2-algebras are classified by equivalence classes of morphisms from a Lie 2-algebra to a derivation Lie 3-algebra.展开更多
In this article, we introduce the notions of restricted Lie 2-algebras and crossed modules of restricted Lie algebras, and give a series of examples of restricted Lie 2-algebras. We also construct restricted Lie 2-alg...In this article, we introduce the notions of restricted Lie 2-algebras and crossed modules of restricted Lie algebras, and give a series of examples of restricted Lie 2-algebras. We also construct restricted Lie 2-algebras from A(m)-algebras, restricted Leibniz algebras, restricted right-symmetric algebras. Finally, we prove that there is a one-to-one correspondence between strict restricted Lie 2-algebras and crossed modules of restricted Lie algebras.展开更多
文摘In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle TM⊕∧<sup>p</sup>T*M for an m-dimensional smooth manifold M, and a Lie 2-algebra which is a “categorified” version of a Lie algebra. We prove that the higher-order Courant algebroids give rise to a semistrict Lie 2-algebra, and we prove that the higher-order Dorfman algebroids give rise to a hemistrict Lie 2-algebra. Consequently, there is an isomorphism from the higher-order Courant algebroids to the higher-order Dorfman algebroids as Lie 2-algebras homomorphism.
基金supported by National Natural Science Foundation of China(Grant Nos.11026046,11101179,10971071)Doctoral Fund of Ministry of Education of China(Grant No.20100061120096)the Fundamental Research Funds for the Central Universities(Grant No.200903294)
文摘In this paper,we give the notion of derivations of Lie 2-algebras using explicit formulas,and construct the associated derivation Lie 3-algebra.We prove that isomorphism classes of non-abelian extensions of Lie 2-algebras are classified by equivalence classes of morphisms from a Lie 2-algebra to a derivation Lie 3-algebra.
基金Supported by ZJNSF(Grant Nos.LY17A010015 and LZ14A010001)NNSF(Grant No.11171296)
文摘In this article, we introduce the notions of restricted Lie 2-algebras and crossed modules of restricted Lie algebras, and give a series of examples of restricted Lie 2-algebras. We also construct restricted Lie 2-algebras from A(m)-algebras, restricted Leibniz algebras, restricted right-symmetric algebras. Finally, we prove that there is a one-to-one correspondence between strict restricted Lie 2-algebras and crossed modules of restricted Lie algebras.