The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyam...The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(AMB), N,N-dioctyl-2-aminomethylpyridine(AMD), tert-butyl 2-(N-octyl-2-picolyamino) acetate(AMC), and N,N-didecyl-2-aminomethylpyridine(AME). The transport flux and selectivity of Cu(Ⅱ) are determined by optimizing composition and structure of carriers and plasticizers. The results show that the hydrophobic modification of 2-aminomethylpyridine derivatives can boost the selective transport of copper ions in PIMs and membrane stability. In the optimum composition of 30 wt.% PVC, 30 wt.% AME, and 40 wt.% NPOE, the initial flux of Cu(Ⅱ) is 5.8×10^(−6) mol·m^(−2)·s^(−1). The FT-IR and XPS spectra identify that the alkyl amine functional groups of AME involve in the transport of copper chloride species. The SAXS analysis demonstrates that the generated micro-channels in PIMs induced by the hydrophobic modification of 2-aminomethylpyridine derivatives can contribute to the enhanced Cu(Ⅱ) flux.展开更多
A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precur...A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in...展开更多
基金financial supports from the National Key R&D Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金Hunan Provincial Science and Technology Plan Project,China(No.2019JJ30031)InnovationDriven of Central South University,China(No.2020CX007)。
文摘The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(AMB), N,N-dioctyl-2-aminomethylpyridine(AMD), tert-butyl 2-(N-octyl-2-picolyamino) acetate(AMC), and N,N-didecyl-2-aminomethylpyridine(AME). The transport flux and selectivity of Cu(Ⅱ) are determined by optimizing composition and structure of carriers and plasticizers. The results show that the hydrophobic modification of 2-aminomethylpyridine derivatives can boost the selective transport of copper ions in PIMs and membrane stability. In the optimum composition of 30 wt.% PVC, 30 wt.% AME, and 40 wt.% NPOE, the initial flux of Cu(Ⅱ) is 5.8×10^(−6) mol·m^(−2)·s^(−1). The FT-IR and XPS spectra identify that the alkyl amine functional groups of AME involve in the transport of copper chloride species. The SAXS analysis demonstrates that the generated micro-channels in PIMs induced by the hydrophobic modification of 2-aminomethylpyridine derivatives can contribute to the enhanced Cu(Ⅱ) flux.
基金the National Natural Science Foundation of China(Nos.20674097,20734004)the Ministry of Education of China(Foundation for Ph.D.Training).
文摘A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in...