The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, where...The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples shaw that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks ate in good agreement with other analytical solutions.展开更多
Due to high cost of full-scale experimental setup, this study presents a numerical model on fatigue behaviours of offshore pipeline with multiple coplanar cracks under cyclic tensile loadings. The validation on numeri...Due to high cost of full-scale experimental setup, this study presents a numerical model on fatigue behaviours of offshore pipeline with multiple coplanar cracks under cyclic tensile loadings. The validation on numerical results is made by other researchers' experimental results, and significant parameters affecting fatigue crack growth are studied.展开更多
The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric sin...The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.展开更多
Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile...Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is autofrettage-type dependent. Swage and Hydraulic autofrettage RSFs differ substantially from each other. The disadvantageous effect of Swage autofrettage is much greater than that resulting from Hydraulic autofrettage. The results also emphasize the significance of the Bauschinger effect and the importance of the 3-D analysis.展开更多
基金the National Institute of Standards and Technologythe Army Office of Research
文摘The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples shaw that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks ate in good agreement with other analytical solutions.
文摘Due to high cost of full-scale experimental setup, this study presents a numerical model on fatigue behaviours of offshore pipeline with multiple coplanar cracks under cyclic tensile loadings. The validation on numerical results is made by other researchers' experimental results, and significant parameters affecting fatigue crack growth are studied.
文摘The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.
文摘Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is autofrettage-type dependent. Swage and Hydraulic autofrettage RSFs differ substantially from each other. The disadvantageous effect of Swage autofrettage is much greater than that resulting from Hydraulic autofrettage. The results also emphasize the significance of the Bauschinger effect and the importance of the 3-D analysis.