The galvanic corrosion behaviour of aluminium 3004 and copper with different area ratios were studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios OfAAI: Acu, stud...The galvanic corrosion behaviour of aluminium 3004 and copper with different area ratios were studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios OfAAI: Acu, studied were l:l, 1:2, l:4, 1:8, 2:1, 4:1 & 8:1. The galvanic corrosion behaviour of metals was studied in terms of relative increase in the corrosion rate of aluminium due to galvanic coupling with copper, relative decrease in the corrosion rate of copper due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with copper, The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with copper. The weathering parameters and the environmental pollutants which have a major role in influencing the galvanic corrosion of metals were also monitored. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium resulting from galvanic corrosion has been highlighted in terms of pit depth, size and density of pit, using a high resolution microscope.展开更多
Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interden...Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interdendritic grain boundarieswith a size range of20?80nm,which is confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD).Therefore,the volume fraction of the dispersoid free zones is greatly reduced and the motion of grain boundaries and dislocations isinhibited more effectively at elevated temperature.After peak precipitation heat treatment,the yield strengths in the alloy with3%TiB2addition at room temperature and300°C were increased by20%and13%respectively,while the minimum creep rate at300°Cwas reduced to only1/5of the base alloy free of TiB2,exhibiting a considerable improvement of elevated-temperature properties inAl?Mn?Mg alloys.展开更多
基金the CSIR-CECRI for the financial support (Project No. MLP 0008)
文摘The galvanic corrosion behaviour of aluminium 3004 and copper with different area ratios were studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios OfAAI: Acu, studied were l:l, 1:2, l:4, 1:8, 2:1, 4:1 & 8:1. The galvanic corrosion behaviour of metals was studied in terms of relative increase in the corrosion rate of aluminium due to galvanic coupling with copper, relative decrease in the corrosion rate of copper due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with copper, The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with copper. The weathering parameters and the environmental pollutants which have a major role in influencing the galvanic corrosion of metals were also monitored. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium resulting from galvanic corrosion has been highlighted in terms of pit depth, size and density of pit, using a high resolution microscope.
基金support from the Natural Sciences and Engineering Research Council of Canada(NSERC)and Rio Tinto,through the NSERC Industry Research Chair in Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi
文摘Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interdendritic grain boundarieswith a size range of20?80nm,which is confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD).Therefore,the volume fraction of the dispersoid free zones is greatly reduced and the motion of grain boundaries and dislocations isinhibited more effectively at elevated temperature.After peak precipitation heat treatment,the yield strengths in the alloy with3%TiB2addition at room temperature and300°C were increased by20%and13%respectively,while the minimum creep rate at300°Cwas reduced to only1/5of the base alloy free of TiB2,exhibiting a considerable improvement of elevated-temperature properties inAl?Mn?Mg alloys.