The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between...The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.展开更多
The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were...The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were chosen to make a scratch and indentation. The results show that the contact depth of the indentation increases with the normal force and material is piled up on the edge of the indentation as plastic distortion. The stable nano-hardness and the reduced modulus of 316 austenitic stainless steel are approximately 6 GPa and 160 GPa, respectively. The friction coefficients of 316 stainless steel with conic-type diamond tip have a typical value of about 0.13, 0.15, 0.17, 0.19, 0.22 and 0.25 when the normal forces are kept at 500 μN, 1000 μN, 1500 μN, 2000 μN, 2500 μN and 3000 μN, revealing an increasing trend with the normal forces. The increase of the friction coefficient in the unloading segment may result from the adhesion force caused by the material piled up.展开更多
Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a ...Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness.展开更多
One of the main problems of stainless steel is its poor pitting corrosion resistance in the aggressive environment containing Cl-, such as seawater. In this paper we investigated the corrosion behavior of the 316 stai...One of the main problems of stainless steel is its poor pitting corrosion resistance in the aggressive environment containing Cl-, such as seawater. In this paper we investigated the corrosion behavior of the 316 stainless steel coated by cerium oxide nanocoating prepared by sol-gel process. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of cerium oxide nanocoatings in 3.5% NaCl solution. The microstructure of the cerium oxide was examined by scanning electron microscopy (SEM) and the formed phases was identified by X-ray diffraction (XRD). The pitting corrosion resistance of the cerium oxide nanocoating was found to be improved after heat treatment of the cerium oxide nanocoating at 300℃ for 30 min.展开更多
The statistical characteristics of the current fluctuations during metastable pitting of 316L stainless steel in NaCI solution were studied using potentiostatic method. The growth rates and peak currents of metastable...The statistical characteristics of the current fluctuations during metastable pitting of 316L stainless steel in NaCI solution were studied using potentiostatic method. The growth rates and peak currents of metastable pits followed log-normal distributions. As potential and chloride concentration increased, both growth rate and peak current of metastable pits increased. The lifetime of metastable pits also followed log-normal distribution, and was almost not affected by potential. Higher growth rates did not definitely result in larger metastable pits. A certain propagation rate range was found beneficial for the micropit to remain growth. At constant potential, the maximum peak currents in different time intervals during a potentiostatic test followed extreme distribution. The statistical characteristics of metastable pitting may be used to predict the tendency of pitting corrosion.展开更多
Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying...Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process .For type 316 stainless steel, the indentation size effect was found. The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect.It can be seen that the square of the nanohardness, H 2, vs the inverse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm,which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed.展开更多
Work-hardening behaviour of type 316 austenitic stainless steel having difFerent initial dislocation structures introduced by swaging to various levels is analysed by a simplified Kock's model which takes into acc...Work-hardening behaviour of type 316 austenitic stainless steel having difFerent initial dislocation structures introduced by swaging to various levels is analysed by a simplified Kock's model which takes into account the structural changes through the dislocation accumulation and annihilation process during deformation. The dislocation accumulation and annihilation factors show a temperature and structure dependence. The dislocation annihilation factor shows a plateau or decreasing tendency in the dynamic strain ageing (DSA) temperature range. This is attributed as either due to dislocation accumulation being more pronounced than dislocation annihilation or as due to precipitates being formed at DSA temperatures acting as obstacles to dislocation motion in the DSA temperature range.展开更多
The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfe...The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfer in such processes has been implemented using the ANSYS software,and the temperature and stress distributions related to 316L stainless steel thin-walled ring parts have been simulated and analyzed.The effect of the laser power,scanning speed,and scanning mode on temperature distribution,molten pool structure,deformation,and stress field has been studied.The simulation results show that the peak temperature,weld pool size,deformation,and residual stress increase with an increase in laser power and a decrease in the scanning speed.The scanning mode has no obvious effect on temperature distribution,deformation,and residual stress.In addition,a forming experiment was carried out.The experimental results show that the samples prepared by laser power P=800 W,V=6 mm/s,and the normal scanning method display good quality,whereas the samples prepared under other parameters have obvious defects.The experimental findings are consistent with the simulation results.展开更多
A dense and conductive LaCrO3 coating was prepared on type 316 stainless steel (316 SS), aiming at exploring its potential appli-cations in SOFC and in other high temperature environments. Powder of LaCrO3 with pero...A dense and conductive LaCrO3 coating was prepared on type 316 stainless steel (316 SS), aiming at exploring its potential appli-cations in SOFC and in other high temperature environments. Powder of LaCrO3 with perovskite structure was synthesized by sol-gel method. LaCrO3 coating on 316 SS substrate was obtained by slurry coating technique. The microstructure of the coating on 316 SS after sintering in air at 800 and 900 ℃ for 200 h was characterized. The effect of LaCrO3 coating on oxidation resistance of the steel in air was also investi-gated. The results showed that the coating was adhesive to the substrate and improved greatly the oxidation resistance of the alloy.展开更多
The study on hot deformation behavior of 316LN stainless steel at low-rate strain is very seldom at present. By sam-pling from industrial 316LN stainless steel and carrying out a compression heat deformation test by m...The study on hot deformation behavior of 316LN stainless steel at low-rate strain is very seldom at present. By sam-pling from industrial 316LN stainless steel and carrying out a compression heat deformation test by means of a Gleeble-3800 thermal simulation testing machine at a strain rate of 3×10^-3s^-1 and a deformation temperature of 600 - 1 100℃, true stress- strain curves are obtained. By analyzing the true stress-strain curves and microscopic structure of the samples, it can be conclu-ded that 1 000℃ and slightly higher temperature are suitable for low-rate strain processing of 316LN stainless steel.展开更多
In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless...In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless plating. The structure of the film and its resistance to corrosion in a warm acidic environment were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction spectrometry (XRD), polarization curves, electrochemical impedance spectroscopy (EIS), and dipping corrosion tests, respectively. The results demonstrate that Ni?Cu?P coatings consist of two types of nodules, which are 19.98% Cu and 39.17% Cu (mass fraction) respectively. The corrosion resistance of the 316L substrate when subjected to a warm acidic solution is significantly improved by the addition of the new type of the Ni?Cu?P coating. The as-plated coatings demonstrate better corrosion resistance than annealed coatings. As-plated coatings and those annealed at 673 K are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 773 and 873 K.展开更多
By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were ...By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.展开更多
This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl...This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl(1 mol/L)+H_2SO_4(0.5 mol/L)solution.Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process.Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagneticα′-martensite phase under the stresses applied during cold rolling.This finding is in agreement with magnetic measurements using a vibrating sample magnetometer.Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage,representing a reduction in the material’s work-hardening ability.Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy.In contrast to the uniform corrosion,wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects,the passive potential range and breakdown potential increased by cold working,showing greater resistance to pit nucleation.Although pits were formed,the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop,as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.展开更多
Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co an...Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.展开更多
Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated....Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.展开更多
Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by...Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°.展开更多
The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts ...The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.展开更多
基金Project (LSL-1310) supported by the Open Project of State Key Laboratory of Solid Lubrication,Collaborative Innovation Center of Nonferrous Metals of Henan Province,ChinaProject (51171059) supported by the National Natural Science Foundation of China
文摘The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.
基金Project 50535050 supported by National Natural Science Foundation of China
文摘The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were chosen to make a scratch and indentation. The results show that the contact depth of the indentation increases with the normal force and material is piled up on the edge of the indentation as plastic distortion. The stable nano-hardness and the reduced modulus of 316 austenitic stainless steel are approximately 6 GPa and 160 GPa, respectively. The friction coefficients of 316 stainless steel with conic-type diamond tip have a typical value of about 0.13, 0.15, 0.17, 0.19, 0.22 and 0.25 when the normal forces are kept at 500 μN, 1000 μN, 1500 μN, 2000 μN, 2500 μN and 3000 μN, revealing an increasing trend with the normal forces. The increase of the friction coefficient in the unloading segment may result from the adhesion force caused by the material piled up.
文摘Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness.
基金supported by the Iranian Nanotechnology and Nanoscience Organization.
文摘One of the main problems of stainless steel is its poor pitting corrosion resistance in the aggressive environment containing Cl-, such as seawater. In this paper we investigated the corrosion behavior of the 316 stainless steel coated by cerium oxide nanocoating prepared by sol-gel process. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of cerium oxide nanocoatings in 3.5% NaCl solution. The microstructure of the cerium oxide was examined by scanning electron microscopy (SEM) and the formed phases was identified by X-ray diffraction (XRD). The pitting corrosion resistance of the cerium oxide nanocoating was found to be improved after heat treatment of the cerium oxide nanocoating at 300℃ for 30 min.
文摘The statistical characteristics of the current fluctuations during metastable pitting of 316L stainless steel in NaCI solution were studied using potentiostatic method. The growth rates and peak currents of metastable pits followed log-normal distributions. As potential and chloride concentration increased, both growth rate and peak current of metastable pits increased. The lifetime of metastable pits also followed log-normal distribution, and was almost not affected by potential. Higher growth rates did not definitely result in larger metastable pits. A certain propagation rate range was found beneficial for the micropit to remain growth. At constant potential, the maximum peak currents in different time intervals during a potentiostatic test followed extreme distribution. The statistical characteristics of metastable pitting may be used to predict the tendency of pitting corrosion.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 1710 13)andtheSpecialFoundationfortheNationalStateBasicResearchProject(No.G19990 6 5 0 )
文摘Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process .For type 316 stainless steel, the indentation size effect was found. The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect.It can be seen that the square of the nanohardness, H 2, vs the inverse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm,which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed.
文摘Work-hardening behaviour of type 316 austenitic stainless steel having difFerent initial dislocation structures introduced by swaging to various levels is analysed by a simplified Kock's model which takes into account the structural changes through the dislocation accumulation and annihilation process during deformation. The dislocation accumulation and annihilation factors show a temperature and structure dependence. The dislocation annihilation factor shows a plateau or decreasing tendency in the dynamic strain ageing (DSA) temperature range. This is attributed as either due to dislocation accumulation being more pronounced than dislocation annihilation or as due to precipitates being formed at DSA temperatures acting as obstacles to dislocation motion in the DSA temperature range.
基金funded by the National Natural Science Foundation of China(Grant Nos.51975339,51605262)China Postdoctoral Science Foundation(Grant Nos.2019T120602,2017M610439)Youth Innovation and Technology Support Program for University in Shandong Province(Grant No.2019KJB003).
文摘The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfer in such processes has been implemented using the ANSYS software,and the temperature and stress distributions related to 316L stainless steel thin-walled ring parts have been simulated and analyzed.The effect of the laser power,scanning speed,and scanning mode on temperature distribution,molten pool structure,deformation,and stress field has been studied.The simulation results show that the peak temperature,weld pool size,deformation,and residual stress increase with an increase in laser power and a decrease in the scanning speed.The scanning mode has no obvious effect on temperature distribution,deformation,and residual stress.In addition,a forming experiment was carried out.The experimental results show that the samples prepared by laser power P=800 W,V=6 mm/s,and the normal scanning method display good quality,whereas the samples prepared under other parameters have obvious defects.The experimental findings are consistent with the simulation results.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A dense and conductive LaCrO3 coating was prepared on type 316 stainless steel (316 SS), aiming at exploring its potential appli-cations in SOFC and in other high temperature environments. Powder of LaCrO3 with perovskite structure was synthesized by sol-gel method. LaCrO3 coating on 316 SS substrate was obtained by slurry coating technique. The microstructure of the coating on 316 SS after sintering in air at 800 and 900 ℃ for 200 h was characterized. The effect of LaCrO3 coating on oxidation resistance of the steel in air was also investi-gated. The results showed that the coating was adhesive to the substrate and improved greatly the oxidation resistance of the alloy.
文摘The study on hot deformation behavior of 316LN stainless steel at low-rate strain is very seldom at present. By sam-pling from industrial 316LN stainless steel and carrying out a compression heat deformation test by means of a Gleeble-3800 thermal simulation testing machine at a strain rate of 3×10^-3s^-1 and a deformation temperature of 600 - 1 100℃, true stress- strain curves are obtained. By analyzing the true stress-strain curves and microscopic structure of the samples, it can be conclu-ded that 1 000℃ and slightly higher temperature are suitable for low-rate strain processing of 316LN stainless steel.
基金Project(CKJA201202)supported by the Innovation Fund Key Project of Nanjing Institute of Technology,ChinaProject(51301088)supported by the National Natural Science Foundation of China
文摘In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless plating. The structure of the film and its resistance to corrosion in a warm acidic environment were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction spectrometry (XRD), polarization curves, electrochemical impedance spectroscopy (EIS), and dipping corrosion tests, respectively. The results demonstrate that Ni?Cu?P coatings consist of two types of nodules, which are 19.98% Cu and 39.17% Cu (mass fraction) respectively. The corrosion resistance of the 316L substrate when subjected to a warm acidic solution is significantly improved by the addition of the new type of the Ni?Cu?P coating. The as-plated coatings demonstrate better corrosion resistance than annealed coatings. As-plated coatings and those annealed at 673 K are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 773 and 873 K.
文摘By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.
基金Shahid Chamran University of Ahvaz for supporting this research
文摘This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl(1 mol/L)+H_2SO_4(0.5 mol/L)solution.Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process.Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagneticα′-martensite phase under the stresses applied during cold rolling.This finding is in agreement with magnetic measurements using a vibrating sample magnetometer.Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage,representing a reduction in the material’s work-hardening ability.Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy.In contrast to the uniform corrosion,wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects,the passive potential range and breakdown potential increased by cold working,showing greater resistance to pit nucleation.Although pits were formed,the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop,as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.
基金Project(2012BAE04B01) supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China
文摘Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.
文摘Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.
基金Project(2018YFB1502500)supported by the National Key Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China+1 种基金Projects(2020JJ5100,2018JJ3101)supported by Natural Science Foundation of Hunan Province,ChinaProject(51671085)supported by the National Natural Science Foundation of China。
文摘Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°.
基金the National Key R&D Program of China(Grant No.2018YFB1106100)。
文摘The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.