This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotrop...This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotropic Sobolev spaces an existence result is proved.展开更多
In this paper the following nonlinear degenerate parabolic systemsu t=Δ x( grad φ(u))+α·Δb(u)+f(x,t,u)with Dirichlet boundary conditions are discussed, where u, grad φ(u),b and f are vector value...In this paper the following nonlinear degenerate parabolic systemsu t=Δ x( grad φ(u))+α·Δb(u)+f(x,t,u)with Dirichlet boundary conditions are discussed, where u, grad φ(u),b and f are vector valued functions and x∈Ω R N. Under some structure conditions on the terms of the systems, the results on existence and uniqueness of global solutions of the systems are established.展开更多
This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solu...This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.展开更多
In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f||| h and 〈f〉h, we give the sufficient and necessary conditi...In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f||| h and 〈f〉h, we give the sufficient and necessary conditions on the initial value to the existence of local solution of doubly nonlinear equation. Moreover some results on the global existence and nonexistence of solutions are considered.展开更多
This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of so...This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of solutions are described in terms of different parameters appearing in this problem. Moreover, by a result of Chasseign and Vázquez and the comparison principle, we deduce that the blow-up occurs only on the boundary ?Ω. In addition, for a bounded Lipschitz domain Ω, we establish the blow-up rate estimates for the positive solution to this problem with a = 0.展开更多
基金The project is supported by NNSF of China (10371116)
文摘This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotropic Sobolev spaces an existence result is proved.
文摘In this paper the following nonlinear degenerate parabolic systemsu t=Δ x( grad φ(u))+α·Δb(u)+f(x,t,u)with Dirichlet boundary conditions are discussed, where u, grad φ(u),b and f are vector valued functions and x∈Ω R N. Under some structure conditions on the terms of the systems, the results on existence and uniqueness of global solutions of the systems are established.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10471013,10471022)the Ministry of Education of China Science and Technology Major Projects (Grant No.104090)
文摘This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.
基金the National Natural Science Foundation of China (Grant No. 10531020)
文摘In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f||| h and 〈f〉h, we give the sufficient and necessary conditions on the initial value to the existence of local solution of doubly nonlinear equation. Moreover some results on the global existence and nonexistence of solutions are considered.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10471022 and 10601011)Key Project of the Ministry of Education of China (Grant No. 104090)
文摘This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of solutions are described in terms of different parameters appearing in this problem. Moreover, by a result of Chasseign and Vázquez and the comparison principle, we deduce that the blow-up occurs only on the boundary ?Ω. In addition, for a bounded Lipschitz domain Ω, we establish the blow-up rate estimates for the positive solution to this problem with a = 0.