One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast...One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.展开更多
A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in pol...A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
文摘One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.
文摘A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.