期刊文献+
共找到396,196篇文章
< 1 2 250 >
每页显示 20 50 100
Controllable rectification on the thermal conductivity of porous YBa_(2)Cu_(3)O_(7−x) superconductors from 3D-printing 被引量:1
1
作者 Yanbin Ma Baoqiang Zhang +1 位作者 Xingyi Zhang You-He Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期182-191,共10页
Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method... Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method,has been reported.In this method,the customized precursor paste and programmable shape are two main advantages.Here,we have put forward a new way to customize the YBCO 3D-printing precursor paste which is doped with Al_(2)O_(3)nanoparticles to obtain YBCO with higher thermal conductivity.The great rheological properties of precursor paste after being doped with Al_(2)O_(3)nanoparticles can help the macroscopic YBCO samples with high thermal conductivity fabricated stably with high crystalline and lightweight properties.Test results show that the peak thermal conductivity of Al_(2)O_(3)-doped YBCO can reach twice as much as pure YBCO,which makes a great effort to reduce the quench propagation speed.Based on the microstructure analysis,one can find that the thermal conductivity of Al_(2)O_(3)-doped YBCO has been determined by its components and microstructures.In addition,a macroscopic theoretical model has been proposed to assess the thermal conductivity of different microstructures,whose calculated results take good agreement with the experimental results.Meanwhile,a microstructure with high thermal conductivity has been found.Finally,a macroscopic YBCO bulk with the presented high thermal conductivity microstructure has been fabricated by the Al_(2)O_(3)-doped method.Compared with YBCO fabricated by the traditional 3D-printed,the Al_(2)O_(3)-doped structural YBCO bulks present excellent heat transfer performances.Our customized design of 3D-printing precursor pastes and novel concept of structural design for enhancing the thermal conductivity of YBCO superconducting material can be widely used in other DIW 3D-printing materials. 展开更多
关键词 Al_(2)O_(3)-doped YBCO thermal conductivity theoretical model controllable design DIW 3d-printing
下载PDF
Nonlinear fluid flow through three-dimensional rough fracture networks:Insights from 3D-printing,CT-scanning,and high-resolution numerical simulations 被引量:1
2
作者 Bo Li Jiafei Wang +1 位作者 Richeng Liu Yujing Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1020-1032,共13页
Nonlinear flow behavior of fluids through three-dimensional(3D)discrete fracture networks(DFNs)considering effects of fracture number,surface roughness and fracture aperture was experimentally and numerically investig... Nonlinear flow behavior of fluids through three-dimensional(3D)discrete fracture networks(DFNs)considering effects of fracture number,surface roughness and fracture aperture was experimentally and numerically investigated.Three physical models of DFNs were 3D-printed and then computed tomography(CT)-scanned to obtain the specific geometry of fractures.The validity of numerically simulating the fluid flow through DFNs was verified via comparison with flow tests on the 3D-printed models.A parametric study was then implemented to establish quantitative relations between the coefficients/parameters in Forchheimer’s law and geometrical parameters.The results showed that the 3D-printing technique can well reproduce the geometry of single fractures with less precision when preparing complex fracture networks,numerical modeling precision of which can be improved via CT-scanning as evidenced by the well fitted results between fluid flow tests and numerical simulations using CT-scanned digital models.Streamlines in DFNs become increasingly tortuous as the fracture number and roughness increase,resulting in stronger inertial effects and greater curvatures of hydraulic pressure-low rate relations,which can be well characterized by the Forchheimer’s law.The critical hydraulic gradient for the onset of nonlinear flow decreases with the increasing aperture,fracture number and roughness,following a power function.The increases in fracture aperture and number provide more paths for fluid flow,increasing both the viscous and inertial permeabilities.The value of the inertial permeability is approximately four orders of magnitude greater than the viscous permeability,following a power function with an exponent a of 3,and a proportional coefficient b mathematically correlated with the geometrical parameters. 展开更多
关键词 Nonlinear flow 3d-printing CT-scanning Fracture network Permeability Fluid flow test
下载PDF
3D-PRINTING在口腔修复领域应用的初步探讨 被引量:2
3
作者 牟文博 程瑶 董波 《广东化工》 CAS 2019年第12期92-92,84,共2页
3D打印是当今数字化制造的产物,具有精准,方便,快速的特点。在发达国家,3D打印已应用于高精端领域,并取得了卓越的成效。而在我国,该技术的发展与应用尚处于初级阶段,3D打印技术由于其自身的独特优势,符合临床应用的要求,适合植入式医... 3D打印是当今数字化制造的产物,具有精准,方便,快速的特点。在发达国家,3D打印已应用于高精端领域,并取得了卓越的成效。而在我国,该技术的发展与应用尚处于初级阶段,3D打印技术由于其自身的独特优势,符合临床应用的要求,适合植入式医疗器械的制作,尤其是口腔修复学。本文对3D-PRINTING在口腔修复领域的应用作一简要综述。 展开更多
关键词 数字化 CAD-CAM 三维扫描 3D打印
下载PDF
3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel 被引量:3
4
作者 Jie Zhu Peiwen Wu +8 位作者 Linlin Chen Jing He Yingcheng Wu Chao Wang Yanhong Chao Linjie Lu Minqiang He Wenshuai Zhu Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期91-97,I0004,共8页
Construction of catalysts with integral structure for oxidative reaction process is an essential promotion to catalysts in industrial application.In this work,a 3D printing method was employed to prepare 3D printed sp... Construction of catalysts with integral structure for oxidative reaction process is an essential promotion to catalysts in industrial application.In this work,a 3D printing method was employed to prepare 3D printed spheres(3D-PSs),followed by carbonization to form 3D carbon spheres(3D-CSs).Then,a 3D-CSs supported phosphotungstic acid(HPW/3D-CSs)was prepared for deep oxidative desulfurization.Compared with traditional powder catalysts,the as-prepared catalyst is easy to be operated and separated from oil products.The supported catalyst possesses excellent catalytic performance and the removal of DBT,4-MDBT and 4,6-DMDBT in fuel oil,reaching^100%of sulfur removal.The effects of various experimental parameters on desulfurization efficiency were considered to optimize reaction conditions.Moreover,the catalyst shows excellent thermal and chemical stability,with no obvious decrease in desulfurization activity after 5 cycles.GC–MS analysis indicates DBT sulfone was the solely oxidized product of DBT. 展开更多
关键词 3D PRINTING INTEGRATED SPHERES Supported catalyst OXIDATIVE DESULFURIZATION
下载PDF
Design of a 3D-printed liquid lithium divertor target plate and its interaction with high-density plasma
5
作者 苑聪聪 叶宗标 +9 位作者 刘建星 郭恒鑫 彭怡超 廖加术 陈波 陈建军 王宏彬 韦建军 张秀杰 芶富均 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期112-120,共9页
A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capil... A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capillary structure.At a steady-state heat load of 10 MW m^(-2),the thermal stress of the tungsten target is within the bearing range of tungsten by finite-element simulation.In order to evaluate the wicking ability of the capillary structure,the wicking process at 600℃ was simulated by FLUENT.The result was identical to that of the corresponding experiments.Within 1 s,liquid lithium was wicked to the target surface by the capillary structure of the target and quickly spread on the target surface.During the wicking process,the average wicking mass rate of lithium should reach 0.062 g s^(-1),which could even supplement the evaporation requirement of liquid lithium under an environment>950℃.Irradiation experiments under different plasma discharge currents were carried out in a linear plasma device(SCU-PSI),and the evolution of the vapor cloud during plasma irradiation was analyzed.It was found that the target temperature tends to plateau despite the gradually increased input current,indicating that the vapor shielding effect is gradually enhanced.The irradiation experiment also confirmed that the 3D-printed tungsten structure has better heat consumption performance than a tungsten mesh structure or multichannel structure.These results reveal the application potential and feasibility of a 3D-printed porous capillary structure in plasma-facing components and provide a reference for further liquid-solid combined target designs. 展开更多
关键词 fusion DIVERTOR 3d-printing TUNGSTEN LITHIUM liquid metal
下载PDF
3D-Printed MOF Monoliths:Fabrication Strategies and Environmental Applications
6
作者 Hossein Molavi Kamyar Mirzaei +4 位作者 Mahdi Barjasteh Seyed Yahya Rahnamaee Somayeh Saeedi Aliakbar Hassanpouryouzband Mashallah Rezakazemi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期358-405,共48页
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora... Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths. 展开更多
关键词 MOFS 3d-printing Environmental remediation SHAPING MONOLITHS
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework 被引量:1
7
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering 被引量:1
8
作者 Sara De Nitto Aleksandra Serafin +3 位作者 Alexandra Karadimou Achim Schmalenberger John J.EMulvihill Maurice N.Collins 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期262-276,共15页
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me... Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies. 展开更多
关键词 Conductive nanoparticles Hydroxyethyl methacrylate(HEMA) Ultraviolet(UV)polymerization 3D printing
下载PDF
Temporal and spatial regulation of biomimetic vascularization in 3D-printed skeletal muscles
9
作者 Minxuan Jia Tingting Fan +3 位作者 Tan Jia Xin Liu Heng Liu Qi Gu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期597-610,共14页
In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay be... In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay between skeletal muscle and endothelial cells in the vascularization ofmuscle tissue.By harnessing the capabilities of three-dimensional(3D)bioprinting and modeling,we developed a novel approach involving the co-construction of endothelial and muscle cells,followed by their subsequent differentiation.Our findings highlight the importance of the interaction dynamics between these two cell types.Notably,introducing endothelial cells during the advanced phases of muscle differentiation enhanced myotube assembly.Moreover,it stimulated the development of the vascular network,paving the way for the early stages of vascularized skeletal muscle development.The methodology proposed in this study indicates the potential for constructing large-scale,physiologically aligned skeletal muscle.Additionally,it highlights the need for exploring the delicate equilibrium and mutual interactions between muscle and endothelial cells.Based on the multicell-type interaction model,we can predict promising pathways for constructing even more intricate tissues or organs. 展开更多
关键词 Skeletal muscle VASCULARIZATION 3D bioprinting Cell interaction
下载PDF
3D-printable Boron Nitride/Polyacrylic Hydrogel Composites with High Thermal Conductivities
10
作者 DAI Jialei XUE Bingyu +5 位作者 QIAN Qi HE Wenhao ZHU Chenglong LEI Liwen WANG Kun XIE Jingjing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1303-1310,共8页
Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of... Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained. 展开更多
关键词 hydrogel composites boron nitride 3D printing thermal conductivity
原文传递
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
11
作者 Xiao Zhao Siyi Wang +6 位作者 Feilong Wang Yuan Zhu Ranli Gu Fan Yang Yongxiang Xu Dandan Xia Yunsong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期966-979,共14页
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev... In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects. 展开更多
关键词 3D printing Bone tissue engineering MAGNESIUM OSTEOGENIC POLYCAPROLACTONE Scaffold.
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
12
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial Sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
Transfer film effects induced by 3D-printed polyether-ether-ketone with excellent tribological properties for joint prosthesis
13
作者 Yang Li Jibao Zheng +1 位作者 Changning Sun Dichen Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期43-56,共14页
Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis ... Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications. 展开更多
关键词 3D printing orientation Transfer film Tribological properties Polyether-ether-ketone Knee prosthesis
下载PDF
Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites
14
作者 Yuan Chen Lin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期84-93,共10页
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun... In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents. 展开更多
关键词 3D printing Continuous carbon fibre MODELLING Energy absorption Negative Poisson's ratio
下载PDF
Advanced strategies for 3D-printed neural scaffolds:materials,structure,and nerve remodeling
15
作者 Jian He Liang Qiao +5 位作者 Jiuhong Li Junlin Lu Zhouping Fu Jiafang Chen Xiangchun Zhang Xulin Hu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期747-770,共24页
Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurologic... Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed. 展开更多
关键词 Nerve regeneration 3D printing based neural scaffolds BIOMATERIALS Nervous system Design strategies
下载PDF
Application of Personalized 3D-Printed Rehabilitation Orthotics in Postoperative Recovery of Jaw Fractures
16
作者 Tianxiang Wei Cheng Chen +2 位作者 Kun Qi Junbo Tu Lili Li 《Journal of Clinical and Nursing Research》 2024年第9期159-167,共9页
Objective:To analyze the effectiveness of personalized 3D-printed rehabilitation orthotics in the postoperative recovery of jaw fractures.Methods:Relevant data were collected from 42 patients with jaw fractures treate... Objective:To analyze the effectiveness of personalized 3D-printed rehabilitation orthotics in the postoperative recovery of jaw fractures.Methods:Relevant data were collected from 42 patients with jaw fractures treated at our hospital between October 2017 and May 2020.Patients were randomly divided into a traditional group(n=17)and a modified group(n=25).The traditional group received standard rehabilitation methods,while the modified group used personalized 3D-printed rehabilitation orthotics combined with improved rehabilitation methods.The temporomandibular disability index(TDI),quality of life scores,postoperative recovery excellence rate,and mouth opening were compared between the two groups at different follow-up times(before rehabilitation,and at 1 week,3 months,and 6 months post-surgery).Results:At 1 week,3 months,and 6 months post-surgery,the TDI in both the traditional and modified groups was significantly lower than before rehabilitation,with statistically significant differences(P<0.05).At 3 and 6 months post-surgery,the TDI in the modified group was lower than in the traditional group,with statistically significant differences(P<0.05).At 3 and 6 months post-surgery,pain,appearance,activity,recreation,work,chewing,swallowing,speech,shoulder function,and total quality of life scores in both groups were higher than before rehabilitation,with the modified group showing significantly higher scores in pain,appearance,chewing,swallowing,and total quality of life(P<0.05).Compared to before rehabilitation,mouth opening significantly improved in both groups at 3 and 6 months post-surgery,with the modified group showing significantly greater improvement(P<0.05).Conclusion:Personalized 3D-printed rehabilitation orthotics are highly effective in the postoperative recovery of jaw fractures.They can improve patients’quality of life after surgery,enhance the excellent rate of postoperative recovery,and increase mouth opening. 展开更多
关键词 Personalized 3D printing Rehabilitation orthotics Jaw fracture
下载PDF
沈阳市O_(3)与PM_(2.5)关系及污染主控因素分析 被引量:3
17
作者 洪也 马雁军 +5 位作者 苏枞枞 王扬锋 任万辉 王继康 王东东 徐晓斌 《环境科学研究》 CAS CSCD 北大核心 2024年第3期455-468,共14页
PM_(2.5)与O_(3)的协同控制是空气质量持续改善的关键所在,厘清PM_(2.5)与O_(3)的关系,识别O_(3)主控因素以及量化气象和人为排放贡献是实施二者协同控制的基础.本研究基于沈阳市大气复合立体超级站2019−2022年地面观测数据,分析PM_(2.5... PM_(2.5)与O_(3)的协同控制是空气质量持续改善的关键所在,厘清PM_(2.5)与O_(3)的关系,识别O_(3)主控因素以及量化气象和人为排放贡献是实施二者协同控制的基础.本研究基于沈阳市大气复合立体超级站2019−2022年地面观测数据,分析PM_(2.5)和O_(3)协同关系及成因;利用逐步回归模型得到影响O_(3)变化的主控因素,并估算各气象因素对O_(3)的贡献.结果表明:①沈阳市2019−2022年夏季PM_(2.5)浓度与O_(3)浓度呈正相关,有明显的协同增长效应,其余三季均呈明显负相关.究其原因,主要是由于夏季高温和高太阳辐射条件利于大气光化学反应,促进了O_(3)、PM_(2.5)中二次无机成分〔主要是硫酸盐(SO_(4)^(2−))、硝酸盐(NO_(3)−)和铵盐(NH_(4)^(+)),简称“SNA”〕共同增长所致;而冬季高排放和高大气稳定度等气象条件利于SNA和二次有机碳(SOC)非均相生成,但弱太阳辐射和低温等条件不利于O_(3)光化学生成,加之高NO的滴定效应,使SNA和SOC浓度均与O_(3)浓度呈负相关.②在观测的相关污染物和气象因子中,过氧乙酰硝酸酯(PAN)与O_(3)浓度的关系最为密切,尤其在夏季.③气象因素中,O_(3)浓度与气温高度相关,与风速也呈正相关,而与相对湿度则在各季节均呈负相关.冬、春、秋三季PM_(2.5)均对O_(3)起抑制作用,冬季尤为突出.在高浓度O_(3)污染(O_(3)浓度>160μg/m^(3))过程中,主控因素中气温和风速的抬升促进O_(3)浓度升高,而高NO2和相对湿度(RH)则有利于降低O_(3)浓度.在2019−2022年高浓度O_(3)污染过程中,气象因素对沈阳市O_(3)浓度变化的贡献高于O_(3)前体物排放的贡献,总贡献为57μg/m^(3),对污染形成起着主导作用. 展开更多
关键词 PM_(2.5) O_(3) PM_(2.5)与O_(3)协同作用 气象因素 逐步回归模型
下载PDF
血浆游离3-甲氧基肾上腺素和游离3-甲氧基去甲肾上腺素在嗜铬细胞瘤/副神经节瘤临床诊断中的价值研究 被引量:2
18
作者 古丽努尔·堆依木汗 常桂娟 +3 位作者 王磊 张玮玮 李梅 赵鑫 《临床内科杂志》 CAS 2024年第1期39-42,共4页
目的 探讨血浆游离3-甲氧基肾上腺素(MN)和游离3-甲氧基去甲肾上腺素(NMN)在嗜铬细胞瘤/副神经节瘤(PPGL)临床诊断中的价值。方法 选取65例PPGL患者作为研究组,同期65例高血压非PPGL患者作为对照组。比较两组受试者一般临床资料及血浆游... 目的 探讨血浆游离3-甲氧基肾上腺素(MN)和游离3-甲氧基去甲肾上腺素(NMN)在嗜铬细胞瘤/副神经节瘤(PPGL)临床诊断中的价值。方法 选取65例PPGL患者作为研究组,同期65例高血压非PPGL患者作为对照组。比较两组受试者一般临床资料及血浆游离MN、NMN水平。根据肿瘤不同分化程度将研究组患者分为高分化组(39例)、中分化组(15例)及低分化组(11例),比较3组患者血浆游离MN、NMN水平。相关性分析采用Pearson和Spearman相关分析。采用受试者工作特征(ROC)曲线分析血浆游离MN、NMN水平对PPGL的预测价值。结果 研究组收缩压、舒张压及血浆游离MN、NMN水平均高于对照组;随着PPGL患者肿瘤分化程度降低,血浆游离MN、NMN水平逐渐升高(P<0.05)。Pearson相关分析结果显示,PPGL患者血浆游离MN、NMN水平与收缩压、舒张压均呈正相关;Spearman相关分析结果显示,血浆游离MN、NMN水平与肿瘤分化程度均呈负相关(P<0.05)。ROC曲线分析结果显示,血浆游离MN、NMN水平联合预测PPGL的ROC曲线下面积(AUC)大于二者单独预测的AUC。结论血浆游离MN、NMN水平检测可作为诊断PPGL的重要指标,且与肿瘤分化程度密切相关。 展开更多
关键词 嗜铬细胞瘤 副神经节瘤 3-甲氧基肾上腺素 3-甲氧基去甲肾上腺素 诊断
下载PDF
CdS/In_(2)O_(3)/g-C_(3)N_(4)复合材料的制备及光催化性能研究 被引量:1
19
作者 朱蓓蓓 周杰 +1 位作者 张海滨 刁国旺 《现代化工》 CAS CSCD 北大核心 2024年第9期125-131,共7页
采用溶剂热法成功合成了一种新型的Z型CdS/In_(2)O_(3)/g-C_(3)N_(4)三元复合光催化材料。通过XRD、SEM、TEM、XPS和紫外-可见漫反射光谱仪对光催化材料的相结构、形貌、原子价态和光响应性能等进行表征,通过可见光降解苯酚评价其光催... 采用溶剂热法成功合成了一种新型的Z型CdS/In_(2)O_(3)/g-C_(3)N_(4)三元复合光催化材料。通过XRD、SEM、TEM、XPS和紫外-可见漫反射光谱仪对光催化材料的相结构、形貌、原子价态和光响应性能等进行表征,通过可见光降解苯酚评价其光催化活性。结果表明,具有零维结构的CdS、一维结构的In_(2)O_(3)和三维结构的g-C_(3)N_(4)形成了0D/1D/3D三元复合材料,该材料在180 min可有效降解90%的苯酚,降解速率是CdS的2.9倍、g-C_(3)N_(4)的6倍,且具有较高的稳定性。复合材料光催化能力的增强主要归因于三维多孔g-C_(3)N_(4)与CdS和In_(2)O_(3)形成的三维空间电场。三维多孔结构不仅有利于污染物的高效吸附,而且为光催化反应提供活性位点,三维空间和网络互连结构有利于光生电荷的定向迁移,增加载流子寿命。 展开更多
关键词 CDS In_(2)O_(3) g-C_(3)N_(4) 光催化 苯酚
原文传递
miR-421靶向调控Menin/Caspase-3影响抑郁症的机制 被引量:1
20
作者 刘永辉 谭庆晶 +4 位作者 陈清 韦理萍 杨俊威 杨侃 高玉广 《实用医学杂志》 CAS 北大核心 2024年第4期453-459,共7页
目的探讨miR-421影响抑郁症发生发展的作用机制。方法采取单次腹腔注射脂多糖(LPS)方法建立抑郁大鼠模型,采用糖水偏好度测试和旷场实验进行抑郁行为检测。通过miRNA微阵列芯片和RT-PCR分析miR-421在抑郁大鼠海马组织中的表达量,运用Tar... 目的探讨miR-421影响抑郁症发生发展的作用机制。方法采取单次腹腔注射脂多糖(LPS)方法建立抑郁大鼠模型,采用糖水偏好度测试和旷场实验进行抑郁行为检测。通过miRNA微阵列芯片和RT-PCR分析miR-421在抑郁大鼠海马组织中的表达量,运用TargetScan数据库和mi RDB数据库进行预测miR-421的靶基因,采用双荧光素酶报告基因实验观察其与靶基因的结合情况,观察过表达和抑制miR-421对靶基因的影响,随后过表达和抑制靶基因,观察其对下游因子的影响,最终探究miR-421影响抑郁症的相关机制。结果miRNA微阵列芯片和RT-PCR检测表明miR-421在抑郁大鼠海马组织中呈高表达(P<0.001),抑制miR-421的表达可显著恢复抑郁大鼠的体重和运动能力(P<0.001)。TargetScan数据库预测得到Menin与miR-421存在结合靶点,双荧光素酶报告基因实验表明Menin与miR-421具有相互作用;当miR-421过表达时,Menin表达量会下调(P<0.001),相反,当抑制miR-421表达时,Menin表达量会上调(P<0.001)。qPCR检测提示,Menin下游因子Caspase-3、NF-κB在抑郁大鼠模型海马组织中的表达显著提高(P<0.001),IL-1β在抑郁大鼠模型海马组织中的表达明显提高(P<0.01),当抑制Menin表达时,Caspase-3、NF-κB、IL-1β表达量会升高(P<0.001),当过表达Menin时,Caspase-3、NF-κB、IL-1β表达量则降低(P<0.001)。结论抑制miR-421表达可升高Menin表达,降低Caspase-3含量,减少神经炎症反应,从而改善抑郁症状。 展开更多
关键词 抑郁症 miR-421 MENIN CASPASE-3 动物实验 作用机制
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部