Let us call a ring R (without identity) to be right symmetric if for any triple a,b,c,∈R?abc = 0 then acb = 0. Such rings are neither symmetric nor reversible (in general) but are semicommutative. With an idempotent ...Let us call a ring R (without identity) to be right symmetric if for any triple a,b,c,∈R?abc = 0 then acb = 0. Such rings are neither symmetric nor reversible (in general) but are semicommutative. With an idempotent they take care of the sheaf representation as obtained by Lambek. Klein 4-rings and their several generalizations and extensions are proved to be members of such class of rings. An extension obtained is a McCoy ring and its power series ring is also proved to be a McCoy ring.展开更多
文摘Let us call a ring R (without identity) to be right symmetric if for any triple a,b,c,∈R?abc = 0 then acb = 0. Such rings are neither symmetric nor reversible (in general) but are semicommutative. With an idempotent they take care of the sheaf representation as obtained by Lambek. Klein 4-rings and their several generalizations and extensions are proved to be members of such class of rings. An extension obtained is a McCoy ring and its power series ring is also proved to be a McCoy ring.