In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and ...In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and plasma transferred arc (PTA) modification.The microstructural characteristics of surface treated steel samples were examined by optical microscopy and scanning electron microscopy (SEM).The mechanical properties of the samples including the surface roughness,microhardness,and abrasive and adhesive wear characteristics were also evaluated.Wear tests were applied by using a block-on-disc configuration under dry sliding conditions.The wear behavior and friction characteristics of the samples were determined as a function of sliding distance.Each sample group was compared with the other sample groups,and it was observed that the carburized samples demonstrated the lowest weight losses;however,PTA-treated samples demonstrated the lowest coefficient of friction in comparison to the other sample groups at the same sliding distance.展开更多
The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeli...The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeling. The flow field and heat transfer in quenching tank were simulated by computational fluid dynamics (CFD) method considering falling and moving of rods during process. Therefore, modeling of flow field was done by a fixed-mesh method for general moving objects equations, and then, energy equation was solved with a numerical approach so that effeet of boiling film heat flux was considered as a source term in energy equation for solid-liquid boundary. Simulated results were verified by comparing with published and experimental data and there was a good agreement between them. Also, the effects of external forced flow and film boiling were investigated on heat flux output, temperature distribution and heat transfer coefficient of rod. Also simulated results determined optimum quenching time for this process.展开更多
基金supported by the Eskisehir Osmangazi University Research Council (No. 200315015)
文摘In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and plasma transferred arc (PTA) modification.The microstructural characteristics of surface treated steel samples were examined by optical microscopy and scanning electron microscopy (SEM).The mechanical properties of the samples including the surface roughness,microhardness,and abrasive and adhesive wear characteristics were also evaluated.Wear tests were applied by using a block-on-disc configuration under dry sliding conditions.The wear behavior and friction characteristics of the samples were determined as a function of sliding distance.Each sample group was compared with the other sample groups,and it was observed that the carburized samples demonstrated the lowest weight losses;however,PTA-treated samples demonstrated the lowest coefficient of friction in comparison to the other sample groups at the same sliding distance.
文摘The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeling. The flow field and heat transfer in quenching tank were simulated by computational fluid dynamics (CFD) method considering falling and moving of rods during process. Therefore, modeling of flow field was done by a fixed-mesh method for general moving objects equations, and then, energy equation was solved with a numerical approach so that effeet of boiling film heat flux was considered as a source term in energy equation for solid-liquid boundary. Simulated results were verified by comparing with published and experimental data and there was a good agreement between them. Also, the effects of external forced flow and film boiling were investigated on heat flux output, temperature distribution and heat transfer coefficient of rod. Also simulated results determined optimum quenching time for this process.