期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimization of ECAP-RAP process for preparing semisolid billet of 6061 aluminum alloy 被引量:4
1
作者 Zu-jian Yang Kai-kun Wang Yan Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期792-800,共9页
6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing(ECAP)-recrystallization and partial(RAP)process(a combination of equal-channel angular processing and recrystallization and par... 6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing(ECAP)-recrystallization and partial(RAP)process(a combination of equal-channel angular processing and recrystallization and partial remelting).The effects of different process parameters on the alloy microstructure were studied and the quantitative relationship between the process parameters and microstructure was established by response surface methodology(RSM)to optimize the process parameters.According to the orthogonal test,the holding temperature and holding time of the four ECAP-RAP process parameters were found to have the greatest impact on the microstructural characteristics,including average grain size and average shape factor.Through RSM,it was also found that when the average grain size or the average shape factor is optimized separately,another will be degraded.When the two indexes were simultaneously considered,the optimal process parameters were found to be a holding temperature of 623°C and holding time of 13 min,and the corresponding average grain size and average shape factor were 35.97μm and 0.8535,respectively.Moreover,comparing the experimental and predicted values,the reliability of the established response surface model was verified. 展开更多
关键词 6061 aluminum alloy equal-channel angular pressing semisolid microstructure response surface methodology
下载PDF
Unified Principal S-N Equation for Friction Stir Welding of 5083 and 6061 Aluminum Alloys
2
作者 Xiangwei Li Ji Fang Xiaoli Guan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期190-200,共11页
With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i.... With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i.e.,5083-H321 and 6061-T6 aluminum alloy,are studied.Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples.The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials.The fatigue resistances of these two materials were com-pared and a unified principal S-N curve equation was fitted.Two key parameters of the unified principal S-N curve obtained by fitting,Cd is 4222.5,and h is 0.2693.A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S-N curve.Two main fatigue tests of bending and tension were used to verify the unified principal S-N curve equation.The results show that the fatigue life calculated by the unified mean 50%master S-N curve parameters are the closest to the fatigue test results.The reliability,practicability,and generality of the master S-N curve fitting parameters were verified using the test data.The unified principal S-N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials. 展开更多
关键词 5083 and 6061 aluminum alloy Friction stir welding Master S-N curve Fatigue life
下载PDF
Superplasticity in an Aluminum Alloy 6061/Al_2O_3p Composite
3
作者 Lihong HAN, Jitai NIU and Darning JIANG The National Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China Tsunernichi Imai National Industrial Research 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期653-656,共4页
The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been em... The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been employed to obtain a fine grained structure before superplastic testing. Superplastic tensile tests were performed at strain rates ranging from 10-2 to 10-4 s-1 and at temperatures from 833 to 893 K. A maximum elongation of 200% was achieved at a temperature of 853 K and an initial strain rate of 1.67×103 s-1. The highest value obtained for the strain rate sensitivity index (in) was 0.32. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state. 展开更多
关键词 AL Superplasticity in an aluminum alloy 6061/Al2O3p Composite rate high DSC Figure
下载PDF
Prediction of tensile strength of friction stir welded 6061 Al plates 被引量:4
4
作者 Farghaly Ahmed A El-Nikhaily Ahmed E Essa A R S 《China Welding》 EI CAS 2019年第3期1-6,共6页
The present paper investigates the prediction of tensile strength after friction stir welding(FSW)using artificial neural network(ANN)in the MATLAB program.The experimental results are used to develop the mathematical... The present paper investigates the prediction of tensile strength after friction stir welding(FSW)using artificial neural network(ANN)in the MATLAB program.The experimental results are used to develop the mathematical model.The combined influence of welding speed,rotation speed,and axial force on the tensile strength of 6061 Al plates is simulated.Results of the tensile test are used to train and test the ANN model.A multi-layer solution is developed using the ANN model to predict tensile strength.Back propagation(BP)method is initially trained using 80%of the experimental data,then,testing is performed with the rest of the data.Results indicate that predicted values are close to the corresponding measured values. 展开更多
关键词 PREDICTION friction stir welding 6061 aluminum alloy artificial neural network model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部