Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its str...Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its structure as a 14-carbon,unsaturated fatty acid.In this investigation,we endeavor to elucidate the putative mechanisms underlying the therapeutic effects of Myristic Acid and Luteolin 7-rutinoside in the context of oral cancer treatment,employing network pharmacology coupled with molecular docking methodologies.Methods:The protein targets of Myristic Acid and Luteolin 7-rutinoside were identified through a search on the Swiss Target Database.Subsequently,a compound-target network was constructed using Cytoscape 3.9.1.Targets associated with OC were retrieved from the OMIM and GeneCards databases.The overlap between compound targets and OC-related targets was determined,and the resulting shared targets were subjected to protein-protein interaction(PPI)network analysis using the STRING database.Additionally,gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted on the identified targets.Molecular docking were performed to investigate the interactions between the core target and the active compound.Results:The component target network comprises 103 nodes and 102 edges.Among the proteins in the protein-protein interaction(PPI)network,those with higher degrees are TNF,PPARG,and TP53.Analysis through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways indicates that the treatment of OC with Myristic Acid and Luteolin 7-rutinoside primarily involves the regulation of miRNA transcription and inflammatory response.The identified signaling pathways include Pathways in cancer,PPAR signaling pathway,EGFR signaling pathway,and TNF signaling pathway.Molecular docking studies reveal that Luteolin 7-rutinoside and Myristic acid exhibit higher affinity towards TNF,PPARG,TP53,and EGFR.Conclusion:This study reveals the potential molecular mechanism of Myristic Acid and Luteolin 7-rutinoside in the treatment of oral cancer,and provides a reference for subsequent basic research.展开更多
Tannic acid and its related compounds are known as refractory organic pollutants, and it can create serious problems for the environment. The adsorption and desorption studies of tannic acid on commercial resins XAD-7...Tannic acid and its related compounds are known as refractory organic pollutants, and it can create serious problems for the environment. The adsorption and desorption studies of tannic acid on commercial resins XAD-7 and D-201 are performed, and all data indicates resin XAD-7 can be used as an effective adsorbent for removing tannic acid during water/wastewater treatment. Furthermore, adsorption thermodynamics studies indicate different adsorption mechanisms for TA on XAD-7 and D-201. FT-IR and solid state 13C-NMR spectroscopy are used to explain the adsorption force between XAD-7 and TA. It suggests that hydrogen bonding is the main adsorption force for TA. Finally, XAD-7's adsorption capacity in the presence of different metal ions is investigated, which indicates that heavy metal ions in solutions can decrease the adsorption capacity for TA on ester resin XAD-7.展开更多
Objective To evaluate the effects of retinoic acid (RA) on expression of bone morphogenetic protein 7 ( BMP-7 ) in rat fetus with cleft palate, and the effects of RA on proliferation and apoptosis of osteoblasts. ...Objective To evaluate the effects of retinoic acid (RA) on expression of bone morphogenetic protein 7 ( BMP-7 ) in rat fetus with cleft palate, and the effects of RA on proliferation and apoptosis of osteoblasts. Methods All-trans RA (ATRA) was used to induce congenital cleft palate in Wistar rat. BMP-7 mRNA expression in maxillary bone tissue of fetal rats was measured by Northern blotting analysis. Flow cytometry and MTF assay were used to measure the apoptosis and proliferation of ATRA-treated MC-3T3-E1 cells. BMP-7 mRNA and protein expressions in ATRA-treated MC-3T3-E1 cells were detected by RT-PCR and Western blotting analysis. Remilts ATRA could induce cleft palate of rat fetus. The incidence rate of cleft palate induced by 100 mg/kg AT-RA (45.5%) was significantly higher than 50 mg/kg ATRA ( 12.5%, P 〈 0. 05 ). BMP-7 mRNA expression decreased in maxillary bone tissue of rat fetus with cleft palate. MC-3T3-E1 cells proliferation treated with 1 × 10^-6 mol/L ATRA decreased by 60%, the cell apoptosis increased by 2 times. BMP-7 mRNA and protein levels in MC-3T3-E1 cells treated with 1 × 10^-6 mol/L ATRA decreased by 60% and 80%, respectively, compared with ATRA-untreated cells ( P 〈 0.05 ). Conclusions BMP-7 may play an important role in embryonic palate development. RA may possess the ability to down-regulate cell proliferation through regulation of BMP-7 gene expression.展开更多
In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC)....In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment.展开更多
The title compound (C12H15NO13S, Mr = 413.31) was synthesized by the nitration of napthalene-1,4-dicarboxylate acid in mixed nitric and sulfuric acids. It crystallizes in monoclinic, space group P2 1/c with a = 8.10...The title compound (C12H15NO13S, Mr = 413.31) was synthesized by the nitration of napthalene-1,4-dicarboxylate acid in mixed nitric and sulfuric acids. It crystallizes in monoclinic, space group P2 1/c with a = 8.100(1), b = 24.369(3), c = 8.634(1) A, β = 105.380(2)°, V = 1643.1(4) A^3, Z = 4, Dc = 1.671 g/cm^3, F(000) = 856, μ(MoKa) = 0.273 mm^- 1, T = 294(2) K, the final R = 0.0400 and wR = 0.1021 for 2866 observed reflections with I 〉 2σ(I). In this crystal there exist a number of H-bonds which link the molecules to form a three-dimensional infinite network structure. The thermal decomposition of the title compound was investigated by using TG-DTG and DSC techniques.展开更多
A series of novel N-[α-(isoflavone-7-O-)acetyl] amino acid methyl esters were prepared from the efficient and regioselective alkylation of isoflavones with chloroacetyl amino acid derivatives under mild condition.
Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In t...Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In the present study,we found that the heading-date gene Ghd7 acted as a negative regulator of germination.A mutant of ghd7 showed low sensitivity to exogenous ABA treatment during seed germination.Further investigation revealed reduced accumulation of ABA in mature ghd7 seeds as a consequence of dampened expression of OsNCED genes.Moreover,elevated GA_(3) level was detected in seeds of ghd7 mutant during imbibition course,which was attributed to the induction of genes responsible for the synthesis pathways of bioactive GAs.Thus,Ghd7 inhibits seed germination by increasing the ABA/GA_(3) ratio.Besides revealing pleiotropic effects of Ghd7,our results indicate its role in linking seed germination to growth-phase transition in rice,which would enrich the theoretical basis for future breeding practices.展开更多
Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell ...Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).展开更多
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
文摘Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its structure as a 14-carbon,unsaturated fatty acid.In this investigation,we endeavor to elucidate the putative mechanisms underlying the therapeutic effects of Myristic Acid and Luteolin 7-rutinoside in the context of oral cancer treatment,employing network pharmacology coupled with molecular docking methodologies.Methods:The protein targets of Myristic Acid and Luteolin 7-rutinoside were identified through a search on the Swiss Target Database.Subsequently,a compound-target network was constructed using Cytoscape 3.9.1.Targets associated with OC were retrieved from the OMIM and GeneCards databases.The overlap between compound targets and OC-related targets was determined,and the resulting shared targets were subjected to protein-protein interaction(PPI)network analysis using the STRING database.Additionally,gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted on the identified targets.Molecular docking were performed to investigate the interactions between the core target and the active compound.Results:The component target network comprises 103 nodes and 102 edges.Among the proteins in the protein-protein interaction(PPI)network,those with higher degrees are TNF,PPARG,and TP53.Analysis through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways indicates that the treatment of OC with Myristic Acid and Luteolin 7-rutinoside primarily involves the regulation of miRNA transcription and inflammatory response.The identified signaling pathways include Pathways in cancer,PPAR signaling pathway,EGFR signaling pathway,and TNF signaling pathway.Molecular docking studies reveal that Luteolin 7-rutinoside and Myristic acid exhibit higher affinity towards TNF,PPARG,TP53,and EGFR.Conclusion:This study reveals the potential molecular mechanism of Myristic Acid and Luteolin 7-rutinoside in the treatment of oral cancer,and provides a reference for subsequent basic research.
基金supported by the National Natural Science Fundation of China(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)
文摘Tannic acid and its related compounds are known as refractory organic pollutants, and it can create serious problems for the environment. The adsorption and desorption studies of tannic acid on commercial resins XAD-7 and D-201 are performed, and all data indicates resin XAD-7 can be used as an effective adsorbent for removing tannic acid during water/wastewater treatment. Furthermore, adsorption thermodynamics studies indicate different adsorption mechanisms for TA on XAD-7 and D-201. FT-IR and solid state 13C-NMR spectroscopy are used to explain the adsorption force between XAD-7 and TA. It suggests that hydrogen bonding is the main adsorption force for TA. Finally, XAD-7's adsorption capacity in the presence of different metal ions is investigated, which indicates that heavy metal ions in solutions can decrease the adsorption capacity for TA on ester resin XAD-7.
基金Supported by National Natural Science Foundation of China(30500414)Scientific Research Project in Department of Education of Liaoning Province(05L508,20061010)
文摘Objective To evaluate the effects of retinoic acid (RA) on expression of bone morphogenetic protein 7 ( BMP-7 ) in rat fetus with cleft palate, and the effects of RA on proliferation and apoptosis of osteoblasts. Methods All-trans RA (ATRA) was used to induce congenital cleft palate in Wistar rat. BMP-7 mRNA expression in maxillary bone tissue of fetal rats was measured by Northern blotting analysis. Flow cytometry and MTF assay were used to measure the apoptosis and proliferation of ATRA-treated MC-3T3-E1 cells. BMP-7 mRNA and protein expressions in ATRA-treated MC-3T3-E1 cells were detected by RT-PCR and Western blotting analysis. Remilts ATRA could induce cleft palate of rat fetus. The incidence rate of cleft palate induced by 100 mg/kg AT-RA (45.5%) was significantly higher than 50 mg/kg ATRA ( 12.5%, P 〈 0. 05 ). BMP-7 mRNA expression decreased in maxillary bone tissue of rat fetus with cleft palate. MC-3T3-E1 cells proliferation treated with 1 × 10^-6 mol/L ATRA decreased by 60%, the cell apoptosis increased by 2 times. BMP-7 mRNA and protein levels in MC-3T3-E1 cells treated with 1 × 10^-6 mol/L ATRA decreased by 60% and 80%, respectively, compared with ATRA-untreated cells ( P 〈 0.05 ). Conclusions BMP-7 may play an important role in embryonic palate development. RA may possess the ability to down-regulate cell proliferation through regulation of BMP-7 gene expression.
基金supported by National Natural Science Foundation of China(No.21207052)China Postdoctoral Science Foundation(No.20110491353)Jiangsu Planned Projects for Postdoctoral Research Funds,China(No.1102116C)
文摘In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment.
基金This work was supported by the NNSFC (No. 20471008)
文摘The title compound (C12H15NO13S, Mr = 413.31) was synthesized by the nitration of napthalene-1,4-dicarboxylate acid in mixed nitric and sulfuric acids. It crystallizes in monoclinic, space group P2 1/c with a = 8.100(1), b = 24.369(3), c = 8.634(1) A, β = 105.380(2)°, V = 1643.1(4) A^3, Z = 4, Dc = 1.671 g/cm^3, F(000) = 856, μ(MoKa) = 0.273 mm^- 1, T = 294(2) K, the final R = 0.0400 and wR = 0.1021 for 2866 observed reflections with I 〉 2σ(I). In this crystal there exist a number of H-bonds which link the molecules to form a three-dimensional infinite network structure. The thermal decomposition of the title compound was investigated by using TG-DTG and DSC techniques.
文摘A series of novel N-[α-(isoflavone-7-O-)acetyl] amino acid methyl esters were prepared from the efficient and regioselective alkylation of isoflavones with chloroacetyl amino acid derivatives under mild condition.
基金This work was supported by the National Key Research and Development Program of China(2017YFD0100406)China Postdoctoral Science Foundation(2019M652606).
文摘Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In the present study,we found that the heading-date gene Ghd7 acted as a negative regulator of germination.A mutant of ghd7 showed low sensitivity to exogenous ABA treatment during seed germination.Further investigation revealed reduced accumulation of ABA in mature ghd7 seeds as a consequence of dampened expression of OsNCED genes.Moreover,elevated GA_(3) level was detected in seeds of ghd7 mutant during imbibition course,which was attributed to the induction of genes responsible for the synthesis pathways of bioactive GAs.Thus,Ghd7 inhibits seed germination by increasing the ABA/GA_(3) ratio.Besides revealing pleiotropic effects of Ghd7,our results indicate its role in linking seed germination to growth-phase transition in rice,which would enrich the theoretical basis for future breeding practices.
基金This work was supported by the National Natural Science Foundation of China(No.39870661). Phone: (0086-451)-3641309 Fax: (0086-451)-3641253
文摘Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/waf1).