Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has ...Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has become highly critical.As a result,various privacy-preserving data analysis technologies have emerged.Hence,we use the randomization process to reconstruct composite data attributes accurately.Also,we use privacy measures to estimate how much deception is required to guarantee privacy.There are several viable privacy protections;however,determining which one is the best is still a work in progress.This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results.Further-more,this paper investigates the use of arbitrary nature with perturbations in privacy preservation.According to the research,arbitrary objects(most notably random matrices)have"predicted"frequency patterns.It shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection strategy.Thisfiltration system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various situations.As a result,the research framework is efficient and effective in maintaining data privacy and security.展开更多
Sausssurean revolution is defined by, among others, his controversial hypothesis of linguistic arbitrariness. This, however, fails to embrace a unanimous acceptation by scholars thereafter and the debates over linguis...Sausssurean revolution is defined by, among others, his controversial hypothesis of linguistic arbitrariness. This, however, fails to embrace a unanimous acceptation by scholars thereafter and the debates over linguistic signs in terms of arbitrariness and motivation, due to the regrettably understood terms, have imbued the development of linguistics, nurturing a myriad of sustainably productive branches in linguistic studies. Based on refreshing interpretation of the key terms, the paper adopts an integrative and dialectical approach to linguistic signs and argues that arbitrariness is more a matter of degree than one of presence or absence, hopefully to bring home that duality as whole features linguistic signs fundamentally.展开更多
In the current debates over Saussure's principle of arbitrariness, there have occurred some confusions and misunderstandings, especially in the equation of Saussure's notion of arbitrariness with the classical notio...In the current debates over Saussure's principle of arbitrariness, there have occurred some confusions and misunderstandings, especially in the equation of Saussure's notion of arbitrariness with the classical notion of arbitrariness. In this article, the uniqueness of Saussure's arbitrariness is illustrated in, relation to the classical arbitrariness.展开更多
Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res...Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.展开更多
The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework i...The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework is the automatic way of getting arbitrarily high order methods,which can be put in the Runge-Kutta(RK)form.The drawback is the larger computational cost with respect to the most used RK methods.To reduce such cost,in an explicit setting,we propose an efcient modifcation:we introduce interpolation processes between the DeC iterations,decreasing the computational cost associated to the low order ones.We provide the Butcher tableaux of the new modifed methods and we study their stability,showing that in some cases the computational advantage does not afect the stability.The fexibility of the novel modifcation allows nontrivial applications to PDEs and construction of adaptive methods.The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted vid...Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios.展开更多
We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretiz...We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.展开更多
Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in o...Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.展开更多
Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to ...Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the "AC=BD" model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.展开更多
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver comp...In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).展开更多
An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed.The numerical scheme is explicit in time and the approximation in space is done with continuou...An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed.The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements.The method is made invar-iant domain preserving for the Euler equations using convex limiting and is tested on vari-ous benchmarks.展开更多
Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are ...Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.展开更多
The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field ...The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field distributions of strain rate,stress,temperature and velocity of metal flow were obtained.The results are basically consistent with the experiment,which indicates that this method may successfully predict the defects in the actual extrusion process.展开更多
Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in th...Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.展开更多
文摘Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has become highly critical.As a result,various privacy-preserving data analysis technologies have emerged.Hence,we use the randomization process to reconstruct composite data attributes accurately.Also,we use privacy measures to estimate how much deception is required to guarantee privacy.There are several viable privacy protections;however,determining which one is the best is still a work in progress.This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results.Further-more,this paper investigates the use of arbitrary nature with perturbations in privacy preservation.According to the research,arbitrary objects(most notably random matrices)have"predicted"frequency patterns.It shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection strategy.Thisfiltration system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various situations.As a result,the research framework is efficient and effective in maintaining data privacy and security.
文摘Sausssurean revolution is defined by, among others, his controversial hypothesis of linguistic arbitrariness. This, however, fails to embrace a unanimous acceptation by scholars thereafter and the debates over linguistic signs in terms of arbitrariness and motivation, due to the regrettably understood terms, have imbued the development of linguistics, nurturing a myriad of sustainably productive branches in linguistic studies. Based on refreshing interpretation of the key terms, the paper adopts an integrative and dialectical approach to linguistic signs and argues that arbitrariness is more a matter of degree than one of presence or absence, hopefully to bring home that duality as whole features linguistic signs fundamentally.
文摘In the current debates over Saussure's principle of arbitrariness, there have occurred some confusions and misunderstandings, especially in the equation of Saussure's notion of arbitrariness with the classical notion of arbitrariness. In this article, the uniqueness of Saussure's arbitrariness is illustrated in, relation to the classical arbitrariness.
基金supported by the National Natural Science Foundation of China (62101588)the National Key Research and Development Program of China (SQ2022YFB3806200)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi (20240129)the Postdoctoral Fellowship Program of CPSF (GZC20242285)
文摘Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.
文摘The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework is the automatic way of getting arbitrarily high order methods,which can be put in the Runge-Kutta(RK)form.The drawback is the larger computational cost with respect to the most used RK methods.To reduce such cost,in an explicit setting,we propose an efcient modifcation:we introduce interpolation processes between the DeC iterations,decreasing the computational cost associated to the low order ones.We provide the Butcher tableaux of the new modifed methods and we study their stability,showing that in some cases the computational advantage does not afect the stability.The fexibility of the novel modifcation allows nontrivial applications to PDEs and construction of adaptive methods.The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
基金This work is supported in part by the National Natural Science Foundation of China(Grant Number 61971078)which provided domain expertise and computational power that greatly assisted the activity+1 种基金This work was financially supported by Chongqing Municipal Education Commission Grants forMajor Science and Technology Project(KJZD-M202301901)the Science and Technology Research Project of Jiangxi Department of Education(GJJ2201049).
文摘Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios.
文摘We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.
基金the support received from the Laoshan Laboratory(No.LSKJ202202000)the National Natural Science Foundation of China(Grant Nos.12032002,U22A20256,and 12302253)the Natural Science Foundation of Beijing(No.L212023)for partially funding this work.
文摘Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.
基金supported by the National Basic Research Program of China(Grant No. 2004CB318000)the "Math+X" Fund of Dalian University of Technology
文摘Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the "AC=BD" model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
基金supported in part by the National Natural Science Foundation of China under Grant 92067202,Grant 62071058.
文摘In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).
基金supported in part by a“Computational R&D in Support of Stockpile Stewardship”Grant from Lawrence Livermore National Laboratorythe National Science Foundation Grants DMS-1619892+2 种基金the Air Force Office of Scientifc Research,USAF,under Grant/contract number FA9955012-0358the Army Research Office under Grant/contract number W911NF-15-1-0517the Spanish MCINN under Project PGC2018-097565-B-I00
文摘An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed.The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements.The method is made invar-iant domain preserving for the Euler equations using convex limiting and is tested on vari-ous benchmarks.
文摘Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.
基金Project (2009A080205003) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject (30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field distributions of strain rate,stress,temperature and velocity of metal flow were obtained.The results are basically consistent with the experiment,which indicates that this method may successfully predict the defects in the actual extrusion process.
基金supported by the Natural Science Foundation of China(Grant No.40574050,40821062)the National Basic Research Program of China(Grant No.2007CB209602)the Key Research Program of China National Petroleum Corporation(Grant No.06A10101)
文摘Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.